Flow-Sensitive Pointer Analysis

- Basic data-flow analysis
- Track points-to graph at each point in the program •
 - Graphs ordered according to subset inclusion on edges of the graph •
- All that's left: what are the transfer functions? \bullet

flow-sensitive analysis

notation: points-to sets

- Can think of a points-to graph as a set of **points-to sets** •

- $pt(ptr) = \{x, y\}$
- $pt(x) = \{z\}$

pt(x) = the set of nodes that x points to = the targets of edges that have x as a source

- Suppose S and S' are set-valued variables: $S = \{x, y\}$ and $S' = \{x, z\}$
- $S' \leftarrow S$ strong update
 - S' has a new value of whatever is in S

•
$$S' = \{x, y\}$$

- $S' \cup \leftarrow S$ weak update
 - Add whatever is in S to S'

•
$$S' = \{x, y, z\}$$

notation

- Forward analysis (points-to information is about what has already happened)
- Use \sqcup at merges (points-to information is *may* information)
- Transfer functions: G is graph before statement, G' is graph after

address of x = & y

- Forward analysis (points-to information is about what has already happened)
- Use \sqcup at merges (points-to information is *may* information) •
- Transfer functions: G is graph before statement, G' is graph after

address of
$$G' = \mathbf{x} = \mathbf{x} \mathbf{y}$$

$$G' = G$$
 with $pt(x) \leftarrow \{y\}$

- Forward analysis (points-to information is about what has already happened)
- Use \sqcup at merges (points-to information is *may* information)
- Transfer functions: G is graph before statement, G' is graph after

$$G' = G$$
 with $pt(x) \leftarrow pt(y)$

- Forward analysis (points-to information is about what has already happened)
- Use \Box at merges (points-to information is *may* information) •
- Transfer functions: G is graph before statement, G' is graph after •

G' = G with $pt(x) \leftarrow \bigcup_{a \in pt(y)} pt(a)$

- Forward analysis (points-to information is about what has already happened)
- Use \Box at merges (points-to information is *may* information) •
- Transfer functions: G is graph before statement, G' is graph after •

G' = G with $\forall a \in pt(x). pt(a) \cup \leftarrow pt(y)$

- Forward analysis (points-to information is about what has already happened)
- Use \Box at merges (points-to information is *may* information) •
- Transfer functions: G is graph before statement, G' is graph after •

G' = G with $\forall a \in pt(x). pt(a) \cup \leftarrow pt(y)$

Weak update! why?

- Strong update
 - At an assignment, you know what variables are being written to
 - Can remove points-to information coming in to the statement
- Weak update
 - * x = ... means "whatever x points to should be updated"
 - At runtime, only one variable is written to, but at analysis time, we don't know which one
 - Each variable may be written to, but we cannot safely remove any information

weak vs. strong updates

loads and stores as paths

program, one path per thing the pointer points to

• One way to keep this straight is to think of loads and stores as multiple paths through the

next: flow-insensitive pointer analysis