
Flow-Sensitive Pointer Analysis

flow-sensitive analysis

• Basic data-flow analysis

• Track points-to graph at each point in the program

• Graphs ordered according to subset inclusion on edges of the graph

• All that’s left: what are the transfer functions?

notation: points-to sets

• Can think of a points-to graph as a set of points-to sets

• 𝑝𝑡(𝑥) = the set of nodes that 𝑥 points to = the targets of edges that have 𝑥 as a source

• 𝑝𝑡 ptr = {𝑥, 𝑦}

• 𝑝𝑡 x = {𝑧}

Xptr Y Z W

notation
• Suppose 𝑆 and 𝑆′ are set-valued variables: 𝑆 = {𝑥, 𝑦} and 𝑆! = {𝑥, 𝑧}

• 𝑆! ← 𝑆 strong update

• 𝑆′ has a new value of whatever is in 𝑆

• 𝑆! = {𝑥, 𝑦}

• 𝑆! ∪← 𝑆 weak update

• Add whatever is in 𝑆 to 𝑆′

• 𝑆! = {𝑥, 𝑦, 𝑧}

dataflow equations
• Forward analysis (points-to information is about what has already happened)

• Use ⊔ at merges (points-to information is may information)

• Transfer functions: 𝐺 is graph before statement, 𝐺′ is graph after

address of
x = & y

copy
x = y

load
x = * y

store
* x = y

dataflow equations
• Forward analysis (points-to information is about what has already happened)

• Use ⊔ at merges (points-to information is may information)

• Transfer functions: 𝐺 is graph before statement, 𝐺′ is graph after

address of
x = & y 𝐺′ = 𝐺 with 𝑝𝑡 x ← {y}

X Y Z

X Y Z

dataflow equations
• Forward analysis (points-to information is about what has already happened)

• Use ⊔ at merges (points-to information is may information)

• Transfer functions: 𝐺 is graph before statement, 𝐺′ is graph after

copy
x = y 𝐺′ = 𝐺 with 𝑝𝑡 x ← 𝑝𝑡(y)

X Y Z

X Y Z

dataflow equations
• Forward analysis (points-to information is about what has already happened)

• Use ⊔ at merges (points-to information is may information)

• Transfer functions: 𝐺 is graph before statement, 𝐺′ is graph after

load
x = * y 𝐺′ = 𝐺 with 𝑝𝑡 x ← ⋃!∈#$(&) 𝑝𝑡(a)

X Y

Z

W B

A

X Y

Z

W B

A

dataflow equations
• Forward analysis (points-to information is about what has already happened)

• Use ⊔ at merges (points-to information is may information)

• Transfer functions: 𝐺 is graph before statement, 𝐺′ is graph after

store
* x = y 𝐺′ = 𝐺 with ∀a ∈ 𝑝𝑡 x . 𝑝𝑡 a ∪← 𝑝𝑡(y)

X

Z

W B

A

Y Q

X

Z

W B

A

Y Q

dataflow equations
• Forward analysis (points-to information is about what has already happened)

• Use ⊔ at merges (points-to information is may information)

• Transfer functions: 𝐺 is graph before statement, 𝐺′ is graph after

store
* x = y 𝐺′ = 𝐺 with ∀a ∈ 𝑝𝑡 x . 𝑝𝑡 a ∪← 𝑝𝑡(y)

X

Z

W B

A

Y Q

X

Z

W B

A

Y Q
Weak update! why?

weak vs. strong updates
• Strong update

• At an assignment, you know what variables are being written to

• Can remove points-to information coming in to the statement

• Weak update

• * x = … means “whatever x points to should be updated”

• At runtime, only one variable is written to, but at analysis time, we don’t know which one

• Each variable may be written to, but we cannot safely remove any information

loads and stores as paths
• One way to keep this straight is to think of loads and stores as multiple paths through the

program, one path per thing the pointer points to

load
x = * y

store
* x = y

//pts(y) = {a, b}
if (…)
 x = a
else
 x = b

//pts(x) = {a, b}
if (…)
 a = y
else
 b = y

next: flow-insensitive pointer analysis

