Flow-Sensitive Pointer Analysis




flow-sensitive analysis

* Basic data-flow analysis
* Track points-to graph at each point in the program
* Graphs ordered according to subset inclusion on edges of the graph

* All that’s left: what are the ?



notation: points-to sets

* Can think of a points-to graph as a set of points-to sets

* pt(x) = the set of nodes that x points to = the targets of edges that have x as a source

CsmONECWRONSO

e pt(ptr) = {x,y}

* pt(x) = {z}



notation

* Suppose S and S’ are set-valued variables: S = {x,y} and S’ = {x, z}
° S’ « S strong update

* S’ has a new value of whatever is in S

* S ={xy]
e S’ U« S weak update

* Add whateverisin Sto S’

e S'={x,y,7}



dataflow equations

* Forward analysis (points-to information is about what has already happened)
* Use Ll at merges (points-to information is may information)

* Transfer functions: G is graph before statement, G’ is graph after

address of copy
X=&Y X=Yy

load
X="y



dataflow equations

* Forward analysis (points-to information is about what has already happened)
* Use Ll at merges (points-to information is may information)

* Transfer functions: G is graph before statement, G’ is graph after

OBNONRO
OB OO

dd f / :
¢ = G with peC0) 1)




dataflow equations

* Forward analysis (points-to information is about what has already happened)
* Use Ll at merges (points-to information is may information)

* Transfer functions: G is graph before statement, G’ is graph after

OO0
Q. O—

©OPY G' = G with pt(x) « pt(y)




dataflow equations

* Forward analysis (points-to information is about what has already happened)
* Use Ll at merges (points-to information is may information)

* Transfer functions: G is graph before statement, G’ is graph after
2 —(»)

CDig
2—»)

v




dataflow equations

* Forward analysis (points-to information is about what has already happened)
* Use Ll at merges (points-to information is may information)

* Transfer functions: G is graph before statement, G’ is graph after

2 —(»)
"

o
" @

O—()




dataflow equations

* Forward analysis (points-to information is about what has already happened)
* Use Ll at merges (points-to information is may information)

* Transfer functions: G is graph before statement, G’ is graph after

2 —(»)
"

o
" @

O—()




weak vs. strong updates

* Strong update
* At an assighment, you know what variables are being written to
* (Can remove points-to information coming in to the statement
* Weak update
°* *x = ... means “whatever x points to should be updated”
* At runtime, only one variable is written to, but at analysis time, we don’t know which one

* Each variable may be written to, but we cannot safely remove any information



loads and stores as paths

* One way to keep this straight is to think of loads and stores as multiple paths through the
program, one path per thing the pointer points to



next: flow-insensitive pointer analysis



