
Pointer Analysis

analyzing programs with pointers

• Where is x defined?

x = 5
ptr = &x
*ptr = 9
y = x

yxptr

analyzing programs with pointers

• Where is x defined?

x = 5
ptr = &x
*ptr = 9
y = x

y

5

xptr

analyzing programs with pointers

• Where is x defined?

x = 5
ptr = &x
*ptr = 9
y = x

y

5

xptr

analyzing programs with pointers

• Where is x defined?

x = 5
ptr = &x
*ptr = 9
y = x

y

9

xptr

analyzing programs with pointers

• Where is x defined?

x = 5
ptr = &x
*ptr = 9
y = x

9

y

9

xptr

analyzing programs with pointers

• Where is x defined?

x = 5
ptr = &x
*ptr = 9
y = x

9

y

9

xptr

analyzing programs with pointers

• Where is x defined?

• Problem: just looking at variable names does not give you the right answer

• Both *ptr and x talk about the same memory location (ptr points to x)

• Must know (or estimate) this points to information for correct analysis

x = 5
ptr = &x
*ptr = 9
y = x

9

y

9

xptr

program model
• For now, types are simple: base type is int, or pointer (*) to another type

• No function calls, no pointer arithmetic

• Statements using pointer variables

• Arbitrary computations involving ints

Address of: x = &y
Copy: x = y
Load: x = *y
Store: *x = y

points-to graph

• What information do we track? points-to graphs
• Nodes are program variables

• Edges say “a points to b”

• Can use a special node for NULL, a special node for “somewhere in the heap”

• Points-to graph can be different at different points

X

ptr

Y

points-to graph
• Out-degree of a node can be more than one

• Node with multiple outgoing edges says “a may point to b or c”

• Represents uncertainty in the analysis

• e.g., if more than one way to reach a program point

X

ptr

Y

if (q)
 ptr = &x
else
 ptr = &y
//what does ptr point to?

making a lattice

• To create a lattice, we need a ⊥, a ⊤ and a ⊑

• ⊥ is “graph with no edges”

• ⊤ is “graph with all nodes pointing to all other nodes”

• G1 ⊑ G2 if and only if G2 has all of the edges G1 has, and maybe some more

• What about join (⊔) and meet (⊓)?

• G1 ⊔ G2 = graph with the union of the edges in both graphs

• G1 ⊓ G2 = graph with the intersection of the edges in both graphs

gameplan

• Two different kinds of pointer analyses

• flow-sensitive: standard dataflow analysis --- what is the points-to graph at each point in the
program?

• flow-insensitive: simplification --- what if we construct a single points-to graph that is valid at all
points in the program? (Overapproximates flow-sensitive result)

example: flow-sensitive

x = &z

ptr = &x

y = &w

ptr = &y

Xptr Y Z W

example: flow-sensitive

x = &z

ptr = &x

y = &w

ptr = &y

Xptr Y Z W

Xptr Y Z W

example: flow-sensitive

x = &z

ptr = &x

y = &w

ptr = &y

Xptr Y Z W

Xptr Y Z W

Xptr Y Z W

example: flow-sensitive

x = &z

ptr = &x

y = &w

ptr = &y

Xptr Y Z W

Xptr Y Z W

Xptr Y Z W

Xptr Y Z W

example: flow-sensitive

x = &z

ptr = &x

y = &w

ptr = &y

Xptr Y Z W

Xptr Y Z W

Xptr Y Z W

Xptr Y Z W

Xptr Y Z W

example: flow-insensitive

x = &z

ptr = &x

y = &w

ptr = &y

Xptr Y Z W

ptr points to x or y because we only have one points-to graph

next: flow-sensitive pointer-analysis

