
More Analyses

Reaching definitions

• What definitions of a variable reach a particular program point

• A definition of variable x from statement s reaches a statement t if there is a path from s to t where
x is not redefined

• Especially important if x is used in t

• Used to build def-use chains and use-def chains, which are key building blocks of other analyses

• Used to determine dependences: if x is defined in s and that definition reaches t then there is a
flow dependence from s to t

• Example: determine if statements were loop invariant

• All definitions that reach an expression must originate from outside the loop, or themselves be
invariant

Creating a reaching-def analysis
• Can we use a powerset lattice?

• At each program point, we want to know which definitions have reached a particular point

• Can use powerset of set of definitions in the program

• V is set of variables, S is set of program statements

• Definition: d ∈ V × S

• Use a tuple, <v, s>

• How big is this set?

• At most |V × S| definitions

Forward or backward?

• What do you think?

Choose confluence operator

• Remember: we want to know if a definition may reach a program point

• What happens if we are at a merge point and a definition reaches from one branch but not
the other?

• We don’t know which branch is taken!

• We should union the two sets – any of those definitions can reach

• We want to avoid getting too many reaching definitions → should start sets at ⊥

Transfer functions for RD

• Forward analysis, so need a slightly different formulation

• Merged data flowing into a statement

• What are gen and kill?

• gen(s): the set of definitions that may occur at s

• e.g., gen(s1: x = e) is <x, s1>

• kill(s): all previous definitions of variables that are definitely redefined by s

• e.g., kill(s1: x = e) is <x, *>

Available expressions

• We’ve seen this one before

• What is the lattice?

• powerset of all expressions appearing in a procedure

• Forward or backward?

• Confluence operator?

Transfer functions for meet

• What do the transfer functions look like if we are doing a meet?

• gen(s): expressions that must be computed in this statement

• kill(s): expressions that use variables that may be defined in this statement

• Note difference between these sets and the sets for reaching definitions or liveness

• Insight: gen and kill must never lead to incorrect results

• Must not decide an expression is available when it isn’t, but OK to be safe and say it isn’t

• Must not decide a definition doesn’t reach, but OK to overestimate and say it does

Analysis initialization

• Remember our formalization

• If we start with everything initialized to ⊥, we compute the least fixpoint

• If we start with everything initialized to ⊤, we compute the greatest fixpoint

• Which do we want? It depends!

• Reaching definitions: a definition that may reach this point

• We want to have as few reaching definitions as possible → use least fixpoint

• Available expressions: an expression that was definitely computed earlier

• We want to have as many available expressions as possible → use greatest fixpoint

• Rule of thumb: if confluence operator is ⊔, start with ⊥, otherwise start with ⊤

Analysis initialization (II)

• The set at the entry of a program (for forward analyses) or exit of a program (for backward
analyses) may be different

• e.g., no expressions available at the beginning of function

• One way of looking at this: start statement and end statement have their own transfer
functions

Very busy expressions

• An expression is very busy if it is computed on every path that leads from a program point

• Why does this matter?

• Can calculate very busy expressions early without wasting computation (since the
expression is used at least once on every outgoing path) – this can save space

• Good candidates for loop invariant code motion

Very busy expressions

• Lattice?

• Direction?

• Confluence operator?

• Initialization?

• Transfer functions?

• Gen? Kill?

Four types of dataflow
• Analysis can either be forward or backward

• Analysis can either be over all paths or over any path

• All paths: merges consider values from all paths

• Any path: merges consider values from any path

• What kind of analysis is constant propagation?

All paths Any path

Forward available
expressions

reaching
definitions

Backward very busy
expressions

liveness analysis

Dataflow analysis precision

• So how good are the results of dataflow analysis?

• What is the best solution we can get?

• Should determine information based on every path the actual program takes

• This is undecidable! (what if the program loops?)

• More restrictive solution: meet over all paths

• Determine information based on every possible path in the program (including paths the actual
program may not take)

• In general, this is also undecidable! (potentially infinite number of possible paths)

Dataflow analysis precision

• The solution to iterative dataflow analysis is less precise than the meet over all paths solution

• More formally, if confluence operator is ⊓

• Greatest fixpoint ⊑ meet over all paths solution

• e.g., for available expressions, calculated fixpoint does not have more available expressions than
MOP solution

• If confluence operator is ⊔

• Meet over all paths solution ⊑ least fixpoint

• e.g., for constant propagation, dataflow solution does not say a variable is constant if MOP says
the variable is definitely not constant

Distributive analysis

• A dataflow analysis is distributive if, for all transfer functions f

• f(x ⊔ y) = f(x) ⊔ f(y) (equivalent definition for ⊓)

• If a dataflow analysis is distributive, then meet over all paths solution = dataflow solution

• Powerset-based analyses are distributive

• Is constant propagation distributive?

Dataflow analysis speed

• A dataflow analysis is k-bounded if, for all functions f

• ∀x . fk(x) = x ⊔ f(x) ⊔ ... ⊔ fk-1(x) (and equivalently for ⊓)

• Consider a cycle, which contains a merge point at a loop header. If an analysis is k-bounded, then as
long as the value coming in to the loop stays constant, you do not need more than k iterations to
converge

• A dataflow analysis is fast if it is k-bounded and k = 2

• Constant propagation is fast: after one cycle, a variable either stays constant or becomes ⊤

• A dataflow analysis is rapid if it is fast and the solution for a cycle is independent of the entry node

