More Analyses
Reaching definitions

• What definitions of a variable reach a particular program point

 • A definition of variable x from statement s reaches a statement t if there is a path from s to t where x is not redefined

• Especially important if x is used in t

 • Used to build def-use chains and use-def chains, which are key building blocks of other analyses

 • Used to determine dependences: if x is defined in s and that definition reaches t then there is a flow dependence from s to t

• Example: determine if statements were loop invariant

 • All definitions that reach an expression must originate from outside the loop, or themselves be invariant
Creating a reaching-def analysis

• Can we use a powerset lattice?

• At each program point, we want to know which definitions have reached a particular point
 • Can use powerset of set of definitions in the program
 • \(V \) is set of variables, \(S \) is set of program statements
 • Definition: \(d \in V \times S \)
 • Use a tuple, \(<v, s>\)
 • How big is this set?
 • At most \(|V \times S|\) definitions
Forward or backward?

• What do you think?
Choose confluence operator

• Remember: we want to know if a definition *may* reach a program point

• What happens if we are at a merge point and a definition reaches from one branch but not the other?

 • We don’t know which branch is taken!

 • We should union the two sets – any of those definitions can reach

• We want to avoid getting too many reaching definitions → should start sets at \bot
Transfer functions for RD

• Forward analysis, so need a slightly different formulation

• Merged data flowing into a statement

\[
\begin{align*}
IN(s) &= \bigcup_{t \in pred(s)} OUT(t) \\
OUT(s) &= gen(s) \cup (IN(s) - kill(s))
\end{align*}
\]

• What are gen and kill?

• gen(s): the set of definitions that may occur at s
 • e.g., gen(s₁: x = e) is <x, s₁>

• kill(s): all previous definitions of variables that are definitely redefined by s
 • e.g., kill(s₁: x = e) is <x, *>
Available expressions

• We’ve seen this one before

• What is the lattice?
 • powerset of all expressions appearing in a procedure

• Forward or backward?

• Confluence operator?
Transfer functions for meet

- What do the transfer functions look like if we are doing a meet?

\[
IN(S) = \bigcap_{t \in \text{pred}(s)} OUT(t)
\]

\[
OUT(S) = \text{gen}(s) \cup (IN(S) - \text{kill}(s))
\]

- gen(s): expressions that must be computed in this statement
- kill(s): expressions that use variables that may be defined in this statement
- Note difference between these sets and the sets for reaching definitions or liveness
- Insight: gen and kill must never lead to incorrect results
 - Must not decide an expression is available when it isn’t, but OK to be safe and say it isn’t
 - Must not decide a definition doesn’t reach, but OK to overestimate and say it does
Analysis initialization

- Remember our formalization
 - If we start with everything initialized to \bot, we compute the least fixpoint
 - If we start with everything initialized to \top, we compute the greatest fixpoint
- Which do we want? It depends!
 - Reaching definitions: a definition that *may* reach this point
 - We want to have as few reaching definitions as possible \rightarrow use least fixpoint
 - Available expressions: an expression that *was definitely* computed earlier
 - We want to have as many available expressions as possible \rightarrow use greatest fixpoint
 - Rule of thumb: if confluence operator is \sqcup, start with \bot, otherwise start with \top
Analysis initialization (II)

• The set at the entry of a program (for forward analyses) or exit of a program (for backward analyses) may be different

 • e.g., no expressions available at the beginning of function

• One way of looking at this: start statement and end statement have their own transfer functions
Very busy expressions

• An expression is very busy if it is computed on every path that leads from a program point

 • Why does this matter?

 • Can calculate very busy expressions early without wasting computation (since the expression is used at least once on every outgoing path) – this can save space

 • Good candidates for loop invariant code motion
Very busy expressions

- Lattice?
- Direction?
- Confluence operator?
- Initialization?
- Transfer functions?
 - Gen? Kill?
Four types of dataflow

• Analysis can either be forward or backward

• Analysis can either be over all paths or over any path
 • All paths: merges consider values from all paths
 • Any path: merges consider values from any path

• What kind of analysis is constant propagation?

<table>
<thead>
<tr>
<th></th>
<th>All paths</th>
<th>Any path</th>
</tr>
</thead>
<tbody>
<tr>
<td>Forward</td>
<td>available expressions</td>
<td>reaching definitions</td>
</tr>
<tr>
<td>Backward</td>
<td>very busy expressions</td>
<td>liveness analysis</td>
</tr>
</tbody>
</table>
Dataflow analysis precision

- So how good are the results of dataflow analysis?
- What is the best solution we can get?
 - Should determine information based on every path the actual program takes
 - This is undecidable! (what if the program loops?)
- More restrictive solution: *meet over all paths*
 - Determine information based on every possible path in the program (including paths the actual program may not take)
 - In general, this is also undecidable! (potentially infinite number of possible paths)
Dataflow analysis precision

• The solution to iterative dataflow analysis is less precise than the meet over all paths solution
 • More formally, if confluence operator is \(\sqcap \)
 • Greatest fixpoint \(\sqsubseteq \) meet over all paths solution
 • e.g., for available expressions, calculated fixpoint does not have more available expressions than MOP solution
 • If confluence operator is \(\sqcup \)
 • Meet over all paths solution \(\sqsubseteq \) least fixpoint
 • e.g., for constant propagation, dataflow solution does not say a variable is constant if MOP says the variable is definitely not constant
Distributive analysis

- A dataflow analysis is *distributive* if, for all transfer functions f

- $f(x \sqcup y) = f(x) \sqcup f(y)$ (equivalent definition for \sqcap)

- If a dataflow analysis is distributive, then meet over all paths solution = dataflow solution

- *Powerset-based* analyses are distributive

- Is constant propagation distributive?
Dataflow analysis speed

• A dataflow analysis is \textit{k-bounded} if, for all functions f

• $\forall x . f^k(x) = x \cup f(x) \cup \ldots \cup f^{k-1}(x)$ (and equivalently for \cap)

• Consider a cycle, which contains a merge point at a loop header. If an analysis is \textit{k-bounded}, then as long as the value coming in to the loop stays constant, you do not need more than k iterations to converge

• A dataflow analysis is \textit{fast} if it is \textit{k-bounded} and $k = 2$

• Constant propagation is fast: after one cycle, a variable either stays constant or becomes \top

• A dataflow analysis is \textit{rapid} if it is \textit{fast} and the solution for a cycle is independent of the entry node