More Analyses

Reaching definitions

®* What definitions of a variable a particular program point

* A definition of variable x from statement s reaches a statement t if there is a path from s to t where
X is not redefined

* Especially important if x is used in t
®* Used to build chains and chains, which are key building blocks of other analyses

* Used to determine dependences: if x is defined in s and that definition reaches t then there is a
flow dependence from s to t

* Example: determine if statements were loop invariant

* All definitions that reach an expression must originate from outside the loop, or themselves be
Invariant

Creating a reaching-def analysis

* Can we use a powerset lattice!
* At each program point, we want to know which definitions have reached a particular point
* (Can use powerset of set of definitions in the program
* Vis set of variables, $ is set of program statements
* Definition:d eV x §
* Use a tuple, <v, s>
* How big is this set?

* At most |V x §]| definitions

Forward or backward?

* What do you think!?

Choose confluence operator

* Remember: we want to know if a definition may reach a program point

®* What happens if we are at a merge point and a definition reaches from one branch but not
the other?

* We don’t know which branch is taken!
®* We should union the two sets — any of those definitions can reach

* We want to avoid getting too many reaching definitions — should start sets at

Transfer functions for RD

* Forward analysis, so need a slightly different formulation

* Merged data flowing into a statement

IN(s) Utepred(s) OUT(t)
OUT(s) gen(s) U (IN(s)— kill(s))

®* What are gen and kill?

* gen(s): the set of definitions that may occur at s
* eg,gen(si:x=e)is <x, sI>
* kill(s): all previous definitions of variables that are definitely redefined by s

* eg,kill(si:x =e)is <x, *>

Available expressions

We've seen this one before

What is the lattice!?

* powerset of all expressions appearing in a procedure
Forward or backward!?

Confluence operator!?

Transfer functions for meet

What do the transfer functions look like if we are doing a meet!?
IN(S) = Niepreds) OUT ()
OUT(S) gen(s) U (IN(S) — kill(s)

gen(s): expressions that must be computed in this statement

kill(s): expressions that use variables that may be defined in this statement

* Note difference between these sets and the sets for reaching definitions or liveness
Insight: gen and kill must never lead to incorrect results

* Must not decide an expression is available when it isn’t, but OK to be safe and say it isn’t

* Must not decide a definition doesn’t reach, but OK to overestimate and say it does

Analysis initialization

* Remember our formalization
* [f we start with everything initialized to L, we compute the least fixpoint
* |f we start with everything initialized to T, we compute the greatest fixpoint
* Which do we want! It depends!
* Reaching definitions: a definition that may reach this point
* We want to have as few reaching definitions as possible — use least fixpoint
* Available expressions: an expression that was definitely computed earlier
* We want to have as many available expressions as possible — use greatest fixpoint

* Rule of thumb: if confluence operator is LI, start with L, otherwise start with T

Analysis initialization (ll)

The set at the entry of a program (for forward analyses) or exit of a program (for backward
analyses) may be different

* e.g, no expressions available at the beginning of function

One way of looking at this: start statement and end statement have their own transfer
functions

Very busy expressions

®* An expression is if it is computed on every path that leads from a program point

* Why does this matter!?

* Can calculate very busy expressions early without wasting computation (since the
expression is used at least once on every outgoing path) — this can save space

®* Good candidates for loop invariant code motion

Very busy expressions

Lattice?

Direction?
Confluence operator!?
Initialization?

Transfer functions?

* Gen! Kill?

Four types of dataflow

Analysis can either be forward or backward
Analysis can either be over all paths or over any path
* All paths: merges consider values from all paths

* Any path: merges consider values from any path

What kind of analysis is constant propagation?

All paths Any path
Forward avallaPIe re.ac.h.lng
expressions definitions
Backward very busy liveness analysis

expressions

Dataflow analysis precision

®* So how good are the results of dataflow analysis?

* What is the best solution we can get!
* Should determine information based on every path the actual program takes
* This is undecidable! (what if the program loops?)

* More restrictive solution:

* Determine information based on every possible path in the program (including paths the actual
program may not take)

* In general, this is also undecidable! (potentially infinite number of possible paths)

Dataflow analysis precision

* The solution to iterative dataflow analysis is less precise than the meet over all paths solution
* More formally, if confluence operator is IN

* Greatest fixpoint = meet over all paths solution

* e.g., for available expressions, calculated fixpoint does not have more available expressions than
MOP solution

* If confluence operator is LI
* Meet over all paths solution £ least fixpoint

* e.g., for constant propagation, dataflow solution does not say a variable is constant if MOP says
the variable is definitely not constant

Distributive analysis

A dataflow analysis is distributive if, for all transfer functions f

f(x U y)=f(x) Uf(y) (equivalent definition for 1)

If a dataflow analysis is distributive, then meet over all paths solution = dataflow solution
Powerset-based analyses are distributive

Is constant propagation distributive?

Dataflow analysis speed

A dataflow analysis is if, for all functions f
Vx . f{(x) = x U f(x) U ... U f<!(x) (and equivalently for 1)

* Consider a cycle, which contains a merge point at a loop header. If an analysis is k-bounded, then as
long as the value coming in to the loop stays constant, you do not need more than k iterations to
converge

A dataflow analysis is if it is k-bounded and k = 2
* Constant propagation is fast: after one cycle, a variable either stays constant or becomes T

A dataflow analysis is rapid if it is fast and the solution for a cycle is independent of the entry node

