
Bitvector Analyses



How to implement?

• Dataflow analyses like live-variable analysis are bit-vector analyses: are 
even more structured than regular dataflow analysis

• Consistent lattice: powerset

• Consistent transfer functions

• Many sources only talk about bitvector dataflow



Bit-vector lattices
• Consider a single element, V, of the powerset(S) lattice

• Each item in S either appears in V or does not: can represent using a single 
bit

• Can represent V as a bit vector

• {a, b, c} = <1, 1, 1>

• { } = <0, 0, 0>

• {b, c} = <0, 1, 1>

• ⊔ and ⊓ (which are just ∪ and ∩) are simply bitwise ⋁ and ⋀, respectively



Eliminating merge nodes

• Many dataflow presentations do not use explicit merge nodes 
in CFG

• How do we handle this?

• Problem: now a node may be a statement and a merge point

• Solution: compose confluence operator and transfer functions

• Note: non-merge nodes have just one successor; this 
equation works for all nodes!

X = X + Z

X = X + Z



Simplifying matters

• Let’s split this up into two different sets

• OUT(s): the set of variables that are live immediately after a statement is executed

• IN(s): the set of variables that are live immediately before a statement is executed

s

t1 t2

out(s)

in(s)

in(t1) in(t2)



• USE(s) are the variables that become live due to a statement—they are 
generated by this statement

• DEF(s) are the variables that stop being live due to a statement—they 
are killed by this statement

Generalizing



Bit-vector analyses
• A bit-vector analysis is any analysis that

• Operates over the powerset lattice, ordered by ⊆ and with ∪ and ∩ as its meet and join

• Has transfer functions that can be written in the form:

• Are these transfer functions monotonic? (Hint: if f and g are monotonic, is f ∘ g 
monotonic?)

• gen and kill are dependent on the statement, but not on IN or OUT

• Things are a little different for forward analyses, and some analyses use ∩ instead of ∪



next: more analyses


