
More Dataflow Analyses

Steps to building analysis

• Step 1: Choose lattice

• Step 2: Choose direction of dataflow (forward or backward)

• Step 3: Create transfer function

• Step 4: Choose confluence operator (i.e., what to do at merges)

• Either join or meet in the lattice

• Let’s walk through these steps for a new (old) analysis

Liveness analysis

• Which variables are live at a particular program point?

• Used all over the place in compilers

• Register allocation

• Loop optimizations

• We’ve done this for single basic blocks, but what about across basic
blocks?

Choose lattice

• What do we want to know?

• At each program point, want to maintain
the set of variables that are live

• Lattice elements: sets of variables

• Natural choice for lattice: powerset of
variables! { }

{a} {b} {c}

{a,b} {a,c} {b,c}

{a,b,c}

Choose dataflow direction
• A variable is live if it is used later in the program without being redefined

• At a given program point, we want to know information about what happens later in the
program

• This is information about the future of the program

• This means that liveness is a backwards analysis

• No reason to run the program forward!

• Recall that we did liveness backwards when we looked at single basic blocks

• Rule of thumb: if symbolic information you are tracking is about what happens in the future,
run the analysis backwards

symbolically executing a statement
• What do we do for a statement like:

• x = y + z

• If x was live “before” (i.e., live after the statement), it isn’t now (i.e., is
not live before the statement)

• If y and z were not live “before,” they are now

• What about:

• x = x

symbolically executing a statement
• Let’s generalize

• For any statement s, we can look at which live variables are killed, and which new variables
are made live (generated)

• Which variables are killed in s?

• The variables that are defined in s: DEF(s)

• Which variables are made live in s?

• The variables that are used in s: USE(s)

• If the set of variables that are live after s is X, what is the set of variables live before s?

Dealing with aliases

• Aliases, as usual, cause problems

• Consider

• What should USE(*z = *w) and DEF(*z = *w) be?

• Keep in mind: the goal is to get a list of variables that may be live at a program point

• For now, assume there is no aliasing

int x, y, r, s
int *z, *w;
if (...) z = &y else z = &x
if (...) w = &r else w = &s
*z = *w; //which variable is defined? which is used?

Dealing with function calls

• Similar problem as aliases:

• Simple solution: functions can do anything – redefine variables, use variables

• So DEF(foo()) is { } and USE(foo()) is V

• Real solution: interprocedural analysis, which determines what variables are used and defined in foo

int foo(int &x, int &y); //pass by reference!

void main() {
int x, y, z;
z = foo(x, y);
}

What about merges?
• What happens at a merge point?

• The variables live into a merge point are the
variables that are live along either branch

• Confluence operator: Set union (⊔) of all
live sets of outgoing edges

How to initialize analysis?

• At the end of the program, we know no variables are live → value at exit point is { }

• What about if we’re analyzing a single function?

• Need to make conservative assumption about what may be live

• What about elsewhere in the program?

• We should initialize other sets to { }

liveness example

