Lattices

- A bounded *lattice* is a partially ordered set with a \perp and \top , with two special functions for any pair of points x and y in the lattice:
 - A join: $x \sqcup y$ is the least element that is greater than x and y (also called the least upper bound)
 - A meet: $x \sqcap y$ is the greatest element that is less than x and y (also called the greatest lower bound)
- Are \Box and \Box monotonic?
 - Yes! (proof?)
 - If $x \sqsubseteq x'$, then both $x \sqcup y$ and $x' \sqcup y$ are fixpoints, as $x \sqcup y$ is the least fixpoint, $x \sqcup y \sqsubseteq x' \sqcup y$

Lattices

Lattice for constant propagation

- Three "levels"
 - Top (definitely not constant)
 - Middle (any specific constant)
 - Bottom (no information)
- Join in lattice: $x \sqcup T = T$ or $x \sqcup y = T$

More about lattices

- Bounded lattices with a finite number of elements are a special case of domains with T
- Systems of monotonic functions (including \sqcup and \sqcap) will have fixpoints
- But some lattices are infinite! (example: the lattice for constant propagation)
 - It turns out that you can show a monotonic function will have a least fixpoint for any lattice (or domain) of finite height
 - Finite height: any totally ordered subset of domain (this is called a *chain*) must be finite
 - Why does this work?
 - \perp , f(\perp), f(f(\perp)), f(f(f(\perp))) ... is totally ordered

Solving system of equations

- Consider
 - a = f(a, b, c)
 - b = g(a, b, c)
 - c = h(a, b, c)
- Obvious iterative solution: evaluate every function at every step
 - $\begin{aligned} a &= \bot \quad f(\bot,\bot,\bot) \quad f(f(\bot,\bot,\bot), \ g(\bot,\bot,\bot), \ h(\bot,\bot,\bot)) \quad \dots \\ b &= \bot \quad g(\bot,\bot,\bot) \quad g(f(\bot,\bot,\bot), \ g(\bot,\bot,\bot), \ h(\bot,\bot,\bot)) \quad \dots \\ c &= \bot \quad h(\bot,\bot,\bot) \quad h(f(\bot,\bot,\bot), \ g(\bot,\bot,\bot), \ h(\bot,\bot,\bot)) \quad \dots \end{aligned}$

Ty function at every step (⊥,⊥,⊥)) ... h(⊥,⊥,⊥)) ... h(⊥,⊥,⊥)) ...

Worklist algorithm

- Worklist algorithm
 - Initialize worklist with all equations
 - Initialize solution vector S to all \perp
 - While worklist not empty
 - Get equation from worklist
 - Re-evaluate equation based on S, update entry corresponding to lhs in S
 - Put all equations which use this lhs on their rhs in the worklist
- Claim: this is basically how constant propagation works!

Obvious point: only necessary to re-evaluate functions whose "important" inputs have changed

Constant propagation as fixpoint

- - Program statements: eval(e, Vin)
 - These are called *transfer functions*
 - Need to make sure this is monotonic
 - Branches
 - Propagates input state vector to output trivially monotonic
 - Merges

• Functions map a vector of variable values <x, y, z> to another vector of variable values

• Use join or meet to combine multiple input variables – monotonic by definition

Mapping worklist algorithm

- variables as there are edges in the CFG
- Initialize all "variables" (state vectors) to $< \perp, \perp, \perp >$
- Executing a statement uses one (or more) input state vectors, produces an output state vector
- Running worklist algorithm for finding fix point is the same as running symbolic execution until state vectors converge!

• Careful: the "variables" in constant propagation are not the individual variable values in a state vector. Each variable (from a fixpoint perspective) is an entire state vector – there are as many

next: more dataflow analysis