
Lattices



Lattices

• A bounded lattice is a partially ordered set with a ⊥ and ⊤, with two special functions for any pair 
of points x and y in the lattice:

• A join: x ⊔ y is the least element that is greater than x and y (also called the least upper bound)

• A meet: x ⊓ y is the greatest element that is less than x and y (also called the greatest lower 
bound)

• Are ⊔ and ⊓ monotonic?

• Yes! (proof?)

• If x ⊑ x’, then both x ⊔ y and x’ ⊔ y are fixpoints, as x ⊔ y is the least fixpoint, x ⊔ y ⊑ x’ ⊔ y 



Lattice for constant propagation

• Three “levels”

• Top (definitely not constant)

• Middle (any specific constant)

• Bottom (no information)

• Join in lattice: x ⊔ ⊤ = ⊤ or x ⊔ y = ⊤



More about lattices
• Bounded lattices with a finite number of elements are a 

special case of domains with ⊤ 

• Systems of monotonic functions (including ⊔ and ⊓) will 
have fixpoints

• But some lattices are infinite! (example: the lattice for 
constant propagation)

• It turns out that you can show a monotonic function 
will have a least fixpoint for any lattice (or domain) of 
finite height

• Finite height: any totally ordered subset of domain (this 
is called a chain) must be finite

• Why does this work?

• ⊥, f(⊥), f(f(⊥)), f(f(f(⊥))) ... is totally ordered



Solving system of equations
• Consider

 a = f(a, b, c)

 b = g(a, b, c)

 c = h(a, b, c)

• Obvious iterative solution: evaluate every function at every step

 a = ⊥   f(⊥,⊥,⊥)  f(f(⊥,⊥,⊥), g(⊥,⊥,⊥), h(⊥,⊥,⊥)) ...

 b = ⊥   g(⊥,⊥,⊥)  g(f(⊥,⊥,⊥), g(⊥,⊥,⊥), h(⊥,⊥,⊥)) ...

 c = ⊥   h(⊥,⊥,⊥)  h(f(⊥,⊥,⊥), g(⊥,⊥,⊥), h(⊥,⊥,⊥)) ...



Worklist algorithm

• Obvious point: only necessary to re-evaluate functions whose “important” inputs have changed

• Worklist algorithm

• Initialize worklist with all equations

• Initialize solution vector S to all ⊥

• While worklist not empty

• Get equation from worklist

• Re-evaluate equation based on S, update entry corresponding to lhs in S

• Put all equations which use this lhs on their rhs in the worklist

• Claim: this is basically how constant propagation works!



Constant propagation as fixpoint

• Functions map a vector of variable values <x, y, z> to another vector of variable values

• Program statements: eval(e, Vin)

• These are called transfer functions

• Need to make sure this is monotonic

• Branches

• Propagates input state vector to output – trivially monotonic

• Merges

• Use join or meet to combine multiple input variables – monotonic by definition



Mapping worklist algorithm

• Careful: the “variables” in constant propagation are not the individual variable values in a state 
vector. Each variable (from a fixpoint perspective) is an entire state vector – there are as many 
variables as there are edges in the CFG

• Initialize all “variables” (state vectors) to < ⊥, ⊥, ⊥>

• Executing a statement uses one (or more) input state vectors, produces an output
state vector

• Running worklist algorithm for finding fix point is the same as running symbolic
execution until state vectors converge!



next: more dataflow analysis


