Lattices



Lattices

* A bounded lattice is a partially ordered set with a L and T, with two special functions for any pair
of points x and y in the lattice:

* Ajoin: x Uy is the least element that is greater than x and y (also called the least upper bound)

* A meet: x Ny is the greatest element that is less than x and y (also called the greatest lower
bound)

* Are LI and N monotonic?

* Yes! (proof?)

* [fx E X, then both x LI y and x’ Ul y are fixpoints, as x Ll y is the least fixpoint, x Uy E x’ Uy



Lattice for constant propagation

* Three “levels” T

* Top (definitely not constant) /// I\\\

* Middle (any specific constant) QA 0 1 e

* Bottom (no information) \\\l//
1

® Joininlattice:x U T=TorxUdy=T



More about lattices

* Bounded lattices with a finite number of elements are a
special case of domains with T

* Systems of monotonic functions (including LI and M) will
have fixpoints

* But some lattices are infinite! (example: the lattice for
constant propagation) / |\

0 1

* |t turns out that you can show a monotonic function - -1

will have a |east fixpoint for any lattice (or domain) of \‘/
finite height
1

* Finite height: any totally ordered subset of domain (this
is called a chain) must be finite

* Why does this work?

o 1, (L), f(f(L)), f(f(f(L))) ... is totally ordered



Solving system of equations

* (Consider

a = f(a, b, ¢)
b = g(a, b, c)
c = h(a, b, c)

* Obvious iterative solution: evaluate every function at every step
a=1 f(L,1,1) f(f(L,L1,1), g(L,L,1), h(L,1,1)) ...
b=1 g(l,1,1) g(f(L,L,L1), g(L,1,1), h(L,L, 1))
c=1 h(LL.1) h(f(L,L1,1), g(L,1,1), h(L,1,1))




Worklist algorithm

* Obvious point: only necessary to re-evaluate functions whose “important” inputs have changed
* Worklist algorithm

* I|nitialize worklist with all equations

* |nitialize solution vector S to all

* While worklist not empty
* Get equation from worklist
* Re-evaluate equation based on S, update entry corresponding to lhs in S

* Put all equations which use this lhs on their rhs in the worklist



Constant propagation as fixpoint

* Functions map a vector of variable values <x, y, z> to another vector of variable values
* Program statements: eval(e, Vin)
®* These are called
* Need to make sure this is monotonic
®* Branches
* Propagates input state vector to output — trivially monotonic
* Merges

* Use join or meet to combine multiple input variables — monotonic by definition



Mapping worklist algorithm

Careful: the “variables” in constant propagation are not the individual variable values in a state
vector. Each variable (from a fixpoint perspective) is an entire state vector — there are as many
variables as there are edges in the CFG

I“

Initialize all “variables” (state vectors)to< 1, 1, 1>

Executing a statement uses one (or more) input state vectors, produces an output
state vector

Running worklist algorithm for finding fix point is the same as running symbolic
execution until state vectors converge!



next: more dataflow analysis



