Lattices
A bounded lattice is a partially ordered set with a ⊥ and ⊤, with two special functions for any pair of points \(x \) and \(y \) in the lattice:

- **A join**: \(x \sqcup y \) is the least element that is greater than \(x \) and \(y \) (also called the least upper bound)
- **A meet**: \(x \sqcap y \) is the greatest element that is less than \(x \) and \(y \) (also called the greatest lower bound)

Are \(\sqcup \) and \(\sqcap \) monotonic?

- Yes! (proof?)

If \(x \sqsubseteq x' \), then both \(x \sqcup y \) and \(x' \sqcup y \) are fixpoints, as \(x \sqcup y \) is the least fixpoint, \(x \sqcup y \sqsubseteq x' \sqcup y \)
Lattice for constant propagation

- Three “levels”
 - Top (definitely not constant)
 - Middle (any specific constant)
 - Bottom (no information)
- Join in lattice: $x \sqcup T = T$ or $x \sqcup y = T$
More about lattices

• Bounded lattices with a finite number of elements are a special case of domains with \top

• Systems of monotonic functions (including \sqcup and \sqcap) will have fixpoints

• But some lattices are infinite! (example: the lattice for constant propagation)

• It turns out that you can show a monotonic function will have a least fixpoint for any lattice (or domain) of finite height

• Finite height: any totally ordered subset of domain (this is called a chain) must be finite

• Why does this work?
 • $\bot, f(\bot), f(f(\bot)), f(f(f(\bot))) \ldots$ is totally ordered
Solving system of equations

• Consider
 \[a = f(a, b, c) \]
 \[b = g(a, b, c) \]
 \[c = h(a, b, c) \]

• Obvious iterative solution: evaluate every function at every step
 \[a = \bot \quad f(\bot, \bot, \bot) \quad f(f(\bot, \bot, \bot), g(\bot, \bot, \bot), h(\bot, \bot, \bot)) \ldots \]
 \[b = \bot \quad g(\bot, \bot, \bot) \quad g(f(\bot, \bot, \bot), g(\bot, \bot, \bot), h(\bot, \bot, \bot)) \ldots \]
 \[c = \bot \quad h(\bot, \bot, \bot) \quad h(f(\bot, \bot, \bot), g(\bot, \bot, \bot), h(\bot, \bot, \bot)) \ldots \]
Worklist algorithm

• Obvious point: only necessary to re-evaluate functions whose “important” inputs have changed

• Worklist algorithm
 • Initialize worklist with all equations
 • Initialize solution vector S to all \bot
 • While worklist not empty
 • Get equation from worklist
 • Re-evaluate equation based on S, update entry corresponding to lhs in S
 • Put all equations which use this lhs on their rhs in the worklist

• Claim: this is basically how constant propagation works!
Constant propagation as fixpoint

• Functions map a vector of variable values \(<x, y, z>\) to another vector of variable values

 • Program statements: \(\text{eval}(e, V_{\text{in}})\)

 • These are called \textit{transfer functions}

 • Need to make sure this is monotonic

• Branches

 • Propagates input state vector to output – trivially monotonic

• Merges

 • Use join or meet to combine multiple input variables – monotonic by definition
Mapping worklist algorithm

• Careful: the “variables” in constant propagation are not the individual variable values in a state vector. Each variable (from a fixpoint perspective) is an entire state vector – there are as many variables as there are edges in the CFG

• Initialize all “variables” (state vectors) to $\langle \perp, \perp, \perp \rangle$

• Executing a statement uses one (or more) input state vectors, produces an output state vector

• Running worklist algorithm for finding fix point is the same as running symbolic execution until state vectors converge!
next: more dataflow analysis