Fixpoint Theorem

# Fixpoint theorem

- One form of *Knaster-Tarski Theorem* (1955):
- If D is a domain and  $f: D \rightarrow D$  is monotonic, then f has at least one fixpoint
- More interesting consequence:
- If  $\perp$  is the least element of D, then f has a *least fixpoint*, and that fixpoint is the largest element in the chain
- $\perp$ , f( $\perp$ ), f(f( $\perp$ )), f(f(f( $\perp$ ))) ... f<sup>n</sup>( $\perp$ )
- Least fixpoint: a fixpoint of f, x such that, if y is a fixpoint of f, then x  $\sqsubseteq$  y



- For domain of powersets, { } is the least element
- For identity function, f<sup>n</sup>({ }) is the chain
- { }, { }, { }, ... so least fixpoint is { }, which is correct
- For  $f(x) = x \cup \{a\}$ , we get the chain
- $\{$   $\}$ ,  $\{a\}$ ,  $\{a\}$ , ... so least fixpoint is  $\{a\}$ , which is correct
- For  $f(x) = \{a\} x$ , function is not monotonic, so not guaranteed to have a fixpoint!
- Important observation: as soon as the chain repeats, we have found the fixpoint (why?)

• First, prove that largest element of chain  $f^n(\perp)$  is a fixpoint

• First, prove that largest element of chain  $f^n(\perp)$  is a fixpoint

#### • $\bot \sqsubseteq f(\bot) \sqsubseteq f(f(\bot)) \sqsubseteq \ldots \sqsubseteq f^{k}(\bot) = f^{k+1}(\bot) = \ldots$

• Second, prove that  $f^n(\bot)$  is the *least* fixpoint

- Second, prove that  $f^n(\perp)$  is the *least* fixpoint
  - Let p be a fixpoint: f(p) = p $\top \sqsubseteq \mathsf{P}$  $f(\perp) \sqsubseteq f(p)$ • • •

 $f^{k}(\bot) \sqsubseteq f^{k}(p) = p$ 

# Adding a top

- Now let us consider domains with an element T, such that for every point x in the domain,  $x \sqsubseteq T$
- New theorem: if D is a domain with a greatest element  $\top$  and  $f: D \rightarrow D$  is monotonic, then the equation x = f(x) has a greatest solution, and that solution is the smallest element in the sequence
- ⊤, f(⊤), f(f(⊤)), ...
- Proof?

# Multi-argument functions

- in each argument when the other is held constant
- Intuition:
  - Electrical circuit has two inputs
  - either goes up or stays the same

# • If D is a domain, a function $f: D \times D \rightarrow D$ is monotonic if it is monotonic

• If you raise either input while holding the other constant, the output

# Fixpoints of multi-arg functions

- Can generalize fixpoint theorem in a straightforward way
- If D is a domain and f,  $g: D \times D \rightarrow D$  are monotonic, the following system of equations has a least fixpoint solution, calculated in the obvious way
- x = f(x, y) and y = g(x, y)
- Can generalize this to more than two variables and domains with greatest elements easily



next: lattices