Lattice Theory

First, something interesting

- Brouwer Fixed point Theorem
 - fixed point
- More formally:
 - higher dimensions)
 - Function $f: D \rightarrow D$
 - There exists some x such that f(x) = x

• Every continuous function f from a closed disk into itself has at least one

• Domain D: a convex, closed, bounded subspace in a plane (generalizes to

- Consider the one-dimensional case: mapping a line segment onto itself
- $x \in [0, 1]$
- f(x) ∈ [0, 1]
- There must exist some x for which f(x) = x
- Examples (in 2D)
 - A mall directory
 - Crumpling up a piece of graph paper

- Finite partially ordered set: D
- Function $f: D \rightarrow D$
- Monotonic function $f: D \rightarrow D$
- \exists fixpoint of f
 - *Ieast* fixpoint of **f**
- Generalization to case when D has a greatest element, T
 - \exists greatest fixpoint of f
- Generalization to systems of equations

Game plan

Partially ordered set (poset)

- Set D with a relation \sqsubseteq that is
 - Reflexive: $x \sqsubseteq x$
 - Anti-symmetric: $x \sqsubseteq y$ and $y \sqsubseteq x \Rightarrow y = x$
 - Transitive: $x \sqsubseteq y, y \sqsubseteq z \Rightarrow x \sqsubseteq z$
- Example: set of integers and \leq
- Graphical representation of poset
 - Graph in which nodes are elements of D and relation \sqsubseteq is indicated by arrows
 - Usually omit reflexive and transitive arrows for legibility
 - Not counting reflexive edges, graph is always a DAG (why?)

- Powerset of any set, ordered by \subseteq is a poset
- In the example, poset elements are {}, {a}, {a, b}, {a, b, c}, etc.
- $X \sqsubseteq Y$ iff $X \subseteq Y$

Another example

Finite poset with least element

- Poset in which
 - Set is **finite**
 - There is a **least** element that is below all other elements in poset
- Examples
 - Set of integers ordered by \leq is *not* a finite poset with least element (no least element, not finite)
 - Set of natural numbers ordered by \leq has a least element (0), but not finite
 - Set of factors of I2, ordered by \leq has a least element as is finite
 - Powerset example from before is finite (how many elements?) with a least element ({})

- this to domain
- to us in the context of dataflow analysis
 - (Goal: what is a lattice?)

• "Finite poset with least element" is a mouthful, so we will abbreviate

• Later, we will add additional conditions to domains that are of interest

next: functions over domains