Lattice Theory
First, something interesting

• Brouwer Fixed point Theorem

• Every continuous function f from a closed disk into itself has at least one fixed point

• More formally:

 • Domain D: a convex, closed, bounded subspace in a plane (generalizes to higher dimensions)

 • Function $f : D \rightarrow D$

• There exists some x such that $f(x) = x$
• Consider the one-dimensional case: mapping a line segment onto itself

• \(x \in [0, 1] \)

• \(f(x) \in [0, 1] \)

• There must exist some \(x \) for which \(f(x) = x \)

• Examples (in 2D)
 • A mall directory
 • Crumpling up a piece of graph paper
Game plan

• Finite partially ordered set: \(D \)
• Function \(f : D \rightarrow D \)
• Monotonic function \(f : D \rightarrow D \)
• \(\exists \) fixpoint of \(f \)
 • \(\exists \) least fixpoint of \(f \)
• Generalization to case when \(D \) has a greatest element, \(T \)
 • \(\exists \) greatest fixpoint of \(f \)
• Generalization to systems of equations
Partially ordered set (poset)

- Set D with a relation \sqsubseteq that is
 - Reflexive: $x \sqsubseteq x$
 - Anti-symmetric: $x \sqsubseteq y$ and $y \sqsubseteq x \Rightarrow y = x$
 - Transitive: $x \sqsubseteq y$, $y \sqsubseteq z \Rightarrow x \sqsubseteq z$
- Example: set of integers and \leq
- Graphical representation of poset
 - Graph in which nodes are elements of D and relation \sqsubseteq is indicated by arrows
 - Usually omit reflexive and transitive arrows for legibility
 - Not counting reflexive edges, graph is always a DAG (why?)
Another example

- Powerset of any set, ordered by \subseteq is a poset
- In the example, poset elements are \emptyset, \{a\}, \{a, b\}, \{a, b, c\}, etc.
- $X \subseteq Y$ iff $X \subseteq Y$
Finite poset with least element

• Poset in which
 • Set is **finite**
 • There is a **least** element that is below all other elements in poset
• Examples
 • Set of integers ordered by \leq is *not* a finite poset with least element (no least element, not finite)
 • Set of natural numbers ordered by \leq has a least element (0), but not finite
 • Set of factors of 12, ordered by \leq has a least element as is finite
 • Powerset example from before is finite (how many elements?) with a least element (\{}\)
Domains

• “Finite poset with least element” is a mouthful, so we will abbreviate this to *domain*

• Later, we will add additional conditions to domains that are of interest to us in the context of dataflow analysis

• (Goal: what is a lattice?)
next: functions over domains