Loops and Fixpoints



what about loops?

Symbolically execute each statement in the program

Treat loops as a fixpoint problem
* If the inputs to a statement change, re-execute statement

* Keep going until inputs stop changing

Claim: this will handle loops

Claim: inputs will eventually stop changing



loop example

’ First time through loop, x = |

Subsequent times, x = T




loop example

|
First time through loop, x = |

Subsequent times, x = T




loop example

|
First time through loop, x = |

Subsequent times, x = T




loop example

|
First time through loop, x = |

Subsequent times, x = T




loop example

|
First time through loop, x = |

Subsequent times, x = T

Why does this work?




lattices

* Symbolic values during execution can be
organized according to “amount of information” ///I\\\
na 2 -1 01/2
* | has more information than any constant; any \\\‘//

constant has more information than




merge in lattices

* Rules for merging basically say merge the information
coming from the two branches: “find the smallest symbol

that has at least as much information as the two symbols”

* Special symbol for this join operation: LI ///l\\\

1. vy UV > vy

2 TUx>T

3 1L x*—> %

4 v,Uv,>T



how can symbols change!?

Fixpoint algorithm: keep re-executing when a symbol changes

What happens when a statement executes?

* If input symbol is “higher” in the lattice, output symbol is T

“higher” in the lattice ///l
How can symbols change!

* _| — some other symbol the first time the statement is \\\‘//
executed 1

* some symbol — | due to merge operations

Symbols only get larger as symbolic execution continues —
symbols can only get as large as | then stop



next: can we generalize this!?



