
Loops and Fixpoints



what about loops?

• Symbolically execute each statement in the program

• Treat loops as a fixpoint problem

• If the inputs to a statement change, re-execute statement
• Keep going until inputs stop changing

• Claim: this will handle loops

• Claim: inputs will eventually stop changing



loop example

First time through loop, x = 1
Subsequent times, x = ⊤



loop example

First time through loop, x = 1
Subsequent times, x = ⊤

⏉

1

1

1 1

⏊ 1

2



loop example

First time through loop, x = 1
Subsequent times, x = ⊤

⏉

1

1

⏉ 1

⏊ 1

2



loop example

First time through loop, x = 1
Subsequent times, x = ⊤

⏉

1

1

⏉
⏉

⏉ ⏉

⏉



loop example

First time through loop, x = 1
Subsequent times, x = ⊤

⏉

1

1

⏉
⏉

⏉ ⏉

⏉

Why does this work?



lattices

• Symbolic values during execution can be 
organized according to “amount of information” 
in a lattice

• ⏉ has more information than any constant; any 
constant has more information than ⏊



merge in lattices

• Rules for merging basically say merge the information 
coming from the two branches: “find the smallest symbol 
that has at least as much information as the two symbols”

• Special symbol for this join operation: ⊔

1. 𝑣# ⊔ 𝑣# → 𝑣#

2. ⊤ ⊔	∗	→ ⊤

3. ⊥	⊔	∗	→	∗

4. 𝑣# ⊔ 𝑣$ → ⊤



how can symbols change?
• Fixpoint algorithm: keep re-executing when a symbol changes

• What happens when a statement executes?

• If input symbol is “higher” in the lattice, output symbol is 
“higher” in the lattice

• How can symbols change?

• ⏊ → some other symbol the first time the statement is 
executed

• some symbol → ⏉ due to merge operations

• Symbols only get larger as symbolic execution continues → 
symbols can only get as large as ⏉ then stop



next: can we generalize this?


