
Symbolic Evaluation

symbolic evaluation

• Introduce symbolic values for each
variable at each program point

⊥ No information about this variable

v Some constant value v (a particular
constant)

⊤ Definitely not a constant

• Before execution begins, have no
information (except will assume that
variables are definitely not constants
at the beginning of the program)

3 (y > x) ?

4 y = 5 6 y = 3

8 (x < 6) ?

9 print(y)

10 halt

1 x = 1

2 y = read()

5 x = y + 1 7 x = y + 3

* merge

* merge

symbolic evaluation

• Introduce symbolic values for each
variable at each program point

⊥ No information about this variable

v Some constant value v (a particular
constant)

⊤ Definitely not a constant

• Before execution begins, have no
information (except will assume that
variables are definitely not constants
at the beginning of the program)

3 (y > x) ?

4 y = 5 6 y = 3

8 (x < 6) ?

9 print(y)

10 halt

1 x = 1

2 y = read()

5 x = y + 1 7 x = y + 3

* merge

* merge

⏉ ⏉

⏊ ⏊

⏊ ⏊

⏊ ⏊

⏊ ⏊

⏊ ⏊

⏊ ⏊

⏊ ⏊

⏊ ⏊

⏊ ⏊

⏊ ⏊

⏊ ⏊

⏊ ⏊

⏊ ⏊

symbolic evaluation

• Symbolically evaluate
expressions

• Evaluate expression with
special rules:

• If result of the expression is
constant, set output to that
constant

• If not constant because of
⏊ or ⏉, emit ⏊ or ⏉

3 (y > x) ?

4 y = 5 6 y = 3

8 (x < 6) ?

9 print(y)

10 halt

1 x = 1

2 y = read()

5 x = y + 1 7 x = y + 3

* merge

* merge

⏉ ⏉

⏊ ⏊

⏊ ⏊

⏊ ⏊

⏊ ⏊

⏊ ⏊

⏊ ⏊

⏊ ⏊

⏊ ⏊

⏊ ⏊

⏊ ⏊

⏊ ⏊

⏊ ⏊

⏊ ⏊

symbolic evaluation

• Symbolically evaluate
expressions

• Evaluate expression with
special rules:

• If result of the expression is
constant, set output to that
constant

• If not constant because of
⏊ or ⏉, emit ⏊ or ⏉

3 (y > x) ?

4 y = 5 6 y = 3

8 (x < 6) ?

9 print(y)

10 halt

1 x = 1

2 y = read()

5 x = y + 1 7 x = y + 3

* merge

* merge

⏉ ⏉

1 ⏉

⏊ ⏊

⏊ ⏊

⏊ ⏊

⏊ ⏊

⏊ ⏊

⏊ ⏊

⏊ ⏊

⏊ ⏊

⏊ ⏊

⏊ ⏊

⏊ ⏊

⏊ ⏊

symbolic evaluation

• Symbolically evaluate
expressions

• Evaluate expression with
special rules:

• If result of the expression is
constant, set output to that
constant

• If not constant because of
⏊ or ⏉, emit ⏊ or ⏉

3 (y > x) ?

4 y = 5 6 y = 3

8 (x < 6) ?

9 print(y)

10 halt

1 x = 1

2 y = read()

5 x = y + 1 7 x = y + 3

* merge

* merge

⏉ ⏉

1 ⏉

1 ⏉

⏊ ⏊

⏊ ⏊

⏊ ⏊

⏊ ⏊

⏊ ⏊

⏊ ⏊

⏊ ⏊

⏊ ⏊

⏊ ⏊

⏊ ⏊

⏊ ⏊

symbolic evaluation

• What if we cannot
determine which way a
branch goes?

• Magic of symbolic
evaluation: evaluate both
branches

3 (y > x) ?

4 y = 5 6 y = 3

8 (x < 6) ?

9 print(y)

10 halt

1 x = 1

2 y = read()

5 x = y + 1 7 x = y + 3

* merge

* merge

⏉ ⏉

1 ⏉

1 ⏉

⏊ ⏊

⏊ ⏊

⏊ ⏊

⏊ ⏊

⏊ ⏊

⏊ ⏊

⏊ ⏊

⏊ ⏊

⏊ ⏊

⏊ ⏊

⏊ ⏊

symbolic evaluation

• What if we cannot
determine which way a
branch goes?

• Magic of symbolic
evaluation: evaluate both
branches

3 (y > x) ?

4 y = 5 6 y = 3

8 (x < 6) ?

9 print(y)

10 halt

1 x = 1

2 y = read()

5 x = y + 1 7 x = y + 3

* merge

* merge

⏉ ⏉

1 ⏉

1 ⏉

1 ⏉

⏊ ⏊

⏊ ⏊

⏊ ⏊

⏊ ⏊

1 ⏉

⏊ ⏊

⏊ ⏊

⏊ ⏊

⏊ ⏊

⏊ ⏊

symbolic evaluation

• What if we cannot
determine which way a
branch goes?

• Magic of symbolic
evaluation: evaluate both
branches

3 (y > x) ?

4 y = 5 6 y = 3

8 (x < 6) ?

9 print(y)

10 halt

1 x = 1

2 y = read()

5 x = y + 1 7 x = y + 3

* merge

* merge

⏉ ⏉

1 ⏉

1 ⏉

1 ⏉

1 5

⏊ ⏊

⏊ ⏊

⏊ ⏊

1 ⏉

⏊ ⏊

1 3

⏊ ⏊

⏊ ⏊

⏊ ⏊

symbolic evaluation

• What if we cannot
determine which way a
branch goes?

• Magic of symbolic
evaluation: evaluate both
branches

3 (y > x) ?

4 y = 5 6 y = 3

8 (x < 6) ?

9 print(y)

10 halt

1 x = 1

2 y = read()

5 x = y + 1 7 x = y + 3

* merge

* merge

⏉ ⏉

1 ⏉

1 ⏉

1 ⏉

1 5

6 5

⏊ ⏊

⏊ ⏊

1 ⏉

⏊ ⏊

1 3

⏊ ⏊

6 3

⏊ ⏊

symbolic evaluation

• What do we do at merge points?
Execution coming from more than one
path

• Come up with a rule to merge
information coming from two paths

1. 𝑣!	vs. 𝑣! → 𝑣!

2. ⊤	vs.	 ∗	→ ⊤

3. ⊥ 	vs.	 ∗	→	∗

4. 𝑣!	vs. 𝑣" → ⊤

3 (y > x) ?

4 y = 5 6 y = 3

8 (x < 6) ?

9 print(y)

10 halt

1 x = 1

2 y = read()

5 x = y + 1 7 x = y + 3

* merge

* merge

⏉ ⏉

1 ⏉

1 ⏉

1 ⏉

1 5

6 5

⏊ ⏊

⏊ ⏊

1 ⏉

⏊ ⏊

1 3

⏊ ⏊

6 3

⏊ ⏊

symbolic evaluation

• What do we do at merge points?
Execution coming from more than one
path

• Come up with a rule to merge
information coming from two paths

1. 𝑣!	vs. 𝑣! → 𝑣!

2. ⊤	vs.	 ∗	→ ⊤

3. ⊥ 	vs.	 ∗	→	∗

4. 𝑣!	vs. 𝑣" → ⊤

3 (y > x) ?

4 y = 5 6 y = 3

8 (x < 6) ?

9 print(y)

10 halt

1 x = 1

2 y = read()

5 x = y + 1 7 x = y + 3

* merge

* merge

⏉ ⏉

1 ⏉

1 ⏉

1 ⏉

1 5

6 5

6 ⏉

⏊ ⏊

1 ⏉

⏊ ⏊

1 3

⏊ ⏊

6 3

⏊ ⏊

symbolic evaluation

• Keep executing until no
more changes

3 (y > x) ?

4 y = 5 6 y = 3

8 (x < 6) ?

9 print(y)

10 halt

1 x = 1

2 y = read()

5 x = y + 1 7 x = y + 3

* merge

* merge

⏉ ⏉

1 ⏉

1 ⏉

1 ⏉

1 5

6 5

6 ⏉

⏊ ⏊

1 ⏉

⏊ ⏊

1 3

⏊ ⏊

6 3

6 ⏉

symbolic evaluation

• Keep executing until no
more changes

3 (y > x) ?

4 y = 5 6 y = 3

8 (x < 6) ?

9 print(y)

10 halt

1 x = 1

2 y = read()

5 x = y + 1 7 x = y + 3

* merge

* merge

⏉ ⏉

1 ⏉

1 ⏉

1 ⏉

1 5

6 5

6 ⏉

⏊ ⏊

1 ⏉

⏊ ⏊

1 3

6 ⏉

6 3

6 ⏉

what about loops?

• Symbolically execute each statement in the program

• Treat loops as a fixpoint problem

• If the inputs to a statement change, re-execute statement
• Keep going until inputs stop changing

• Claim: this will handle loops

• Claim: inputs will eventually stop changing

next: loops and fixpoints

