Symbolic Evaluation

symbolic evaluation

* Introduce symbolic values for each
variable at each program point

1 No information about this variable

v Some constant value v (a particular
constant)

T Definitely not a constant

* Before execution begins, have no
information (except will assume that
variables are definitely not constants
at the beginning of the program)

symbolic evaluation

* Introduce symbolic values for each
variable at each program point

1 No information about this variable

v Some constant value v (a particular
constant)

T Definitely not a constant

* Before execution begins, have no
information (except will assume that
variables are definitely not constants
at the beginning of the program)

symbolic evaluation

* Symbolically evaluate
expressions

* Evaluate expression with
special rules:

* If result of the expression is
constant, set output to that
constant

* |f not constant because of

|l orT,emit | or T

symbolic evaluation

* Symbolically evaluate
expressions

* Evaluate expression with
special rules:

* If result of the expression is
constant, set output to that
constant

* |f not constant because of

|l orT,emit | or T

symbolic evaluation

* Symbolically evaluate
expressions

* Evaluate expression with
special rules:

* If result of the expression is
constant, set output to that
constant

* |f not constant because of

|l orT,emit | or T

symbolic evaluation

®* What if we cannot
determine which way a
branch goes?

* Magic of symbolic
evaluation: evaluate both
branches

symbolic evaluation

®* What if we cannot
determine which way a
branch goes?

* Magic of symbolic
evaluation: evaluate both
branches

symbolic evaluation

®* What if we cannot
determine which way a
branch goes?

* Magic of symbolic
evaluation: evaluate both
branches

symbolic evaluation

®* What if we cannot
determine which way a
branch goes?

* Magic of symbolic
evaluation: evaluate both
branches

symbolic evaluation

®* What do we do at merge points!
Execution coming from more than one
path

* Come up with a rule to merge
information coming from two paths

1. vyvs.v; > vy

2 Tvs. x> T

3. VS, * — %

4. vyvs.v, > T

symbolic evaluation

®* What do we do at merge points!
Execution coming from more than one
path

* Come up with a rule to merge
information coming from two paths

1. vyvs.v; > vy

2 Tvs. x> T

3. VS, * — %

4. vyvs.v, > T

symbolic evaluation

* Keep executing until no
more changes

symbolic evaluation

* Keep executing until no
more changes

what about loops?

Symbolically execute each statement in the program

Treat loops as a fixpoint problem
* If the inputs to a statement change, re-execute statement

* Keep going until inputs stop changing

Claim: this will handle loops

Claim: inputs will eventually stop changing

next: loops and fixpoints

