
Constant Propagation

overview of algorithm

• Build control flow graph

• Perform symbolic evaluation

• Keep track of whether variables are constant or not

• Replace constant-valued variable uses with their values, try to simplify expressions
and control flow

overview of algorithm

• Build control flow graph

• Perform symbolic evaluation

• Keep track of whether variables are constant or not

• Replace constant-valued variable uses with their values, try to simplify expressions
and control flow

build control flow graph

x = 1;
y = read()
if (y > x)
 y = 5;
 x = y + 1;
else
 y = 3;
 x = y + 3;
if (x < 6)
 print(y);

1 x = 1
2 y = read()
3 (y > x) ?

4 y = 5
5 x = y + 1

6 y = 3
7 x = y + 3

8 (x < 6) ?

9 print(y)

10 halt

statement level cfg

• When evaluating a piece of code, we care about individual statements, not basic
blocks

• Need to know the value of variables right before a statement executes to figure out
what the statement does

• Create a new version of the CFG with one node per statement instead of per basic
block

• Also helpful to explicitly mark where control flow paths merge

build control flow graph

x = 1;
y = read()
if (y > x)
 y = 5;
 x = y + 1;
else
 y = 3;
 x = y + 3;
if (x < 6)
 print(y);

3 (y > x) ?

4 y = 5 6 y = 3

8 (x < 6) ?

9 print(y)

10 halt

1 x = 1

2 y = read()

5 x = y + 1 7 x = y + 3

* merge

* merge

executing a cfg

• When we concretely execute a
CFG, we are executing a program

• Keep track of values of variables
before each statement

• Execute statement to determine
values after the statement executes

• Evaluate conditionals to choose
which path to take

3 (y > x) ?

4 y = 5 6 y = 3

8 (x < 6) ?

9 print(y)

10 halt

1 x = 1

2 y = read()

5 x = y + 1 7 x = y + 3

* merge

* merge

executing a cfg

• When we concretely execute a
CFG, we are executing a program

• Keep track of values of variables
before each statement

• Execute statement to determine
values after the statement executes

• Evaluate conditionals to choose
which path to take

3 (y > x) ?

4 y = 5 6 y = 3

8 (x < 6) ?

9 print(y)

10 halt

1 x = 1

2 y = read()

5 x = y + 1 7 x = y + 3

* merge

* merge

? ?

1 ?

1 7

1 7

1 5

6 5

6 5

6 5

6 5

executing a cfg

• When we concretely execute a
CFG, we are executing a program

• Keep track of values of variables
before each statement

• Execute statement to determine
values after the statement executes

• Evaluate conditionals to choose
which path to take

3 (y > x) ?

4 y = 5 6 y = 3

8 (x < 6) ?

9 print(y)

10 halt

1 x = 1

2 y = read()

5 x = y + 1 7 x = y + 3

* merge

* merge

? ?

1 ?

1 -1

6 3

6 3

1 -1

6 3

1 3

6 3

executing a cfg

• No matter what line 2 does, x
always has the value 6 at line 8

• print statement never executes

• How can we figure this out?

3 (y > x) ?

4 y = 5 6 y = 3

8 (x < 6) ?

9 print(y)

10 halt

1 x = 1

2 y = read()

5 x = y + 1 7 x = y + 3

* merge

* merge

? ?

1 ?

1 -1

6 3

6 3

1 -1

6 3

1 3

6 3

overview of algorithm

• Build control flow graph

• Perform symbolic evaluation

• Keep track of whether variables are constant or not

• Replace constant-valued variable uses with their values, try to simplify expressions
and control flow

next: symbolic evaluation

