
Dataflow Analysis



Program optimizations

• So far we have talked about different kinds of optimizations

• Peephole optimizations

• Local common sub-expression elimination

• What about global optimizations

• Optimizations across multiple basic blocks (usually a whole procedure)

• Conditionals and loops



Useful optimizations
• Common subexpression elimination (global)

• Need to know which expressions are available at a point

• Dead code elimination

• Need to know if the effects of a piece of code are never needed, or if 
code cannot be reached

• Constant folding

• Need to know if variable has a constant value

• So how do we get this information?



Dataflow analysis

• Framework for doing compiler analyses to drive optimization

• Works across basic blocks

• Examples

• Constant propagation: determine which variables are constant

• Liveness analysis: determine which variables are live

• Available expressions: determine which expressions have valid computed 
values

• Reaching definitions: determine which definitions could “reach” a use



Example: constant propagation

• Goal: determine when variables take on constant values

• Why? Can enable many optimizations

• Constant folding

• Create dead code

x = 1;
y = x + 2;
if (x > z) then y = 5
... y ...

x = 1;
y = 3;
if (1 > z) then y = 5
... y ...

x = 1;
y = x + 2;
if (y > x) then y = 5
... y ...

x = 1;
y = 3; //dead code
if (true) then y = 5 //simplify!
... y ...



How can we find constants?
• Run program and see which variables are constant?

• Problem: variables can be constant with some inputs, not others – 
need an approach that works for all inputs!

• Problem: program can run forever (infinite loops?) – need an 
approach that we know will finish

• Idea: run program symbolically

• Essentially, keep track of whether a variable is constant or not 
constant (but nothing else)



next: constant propagation


