
Desugaring arrays



what is the syntactic sugar?

• An array is just a series of boxes stored consecutively in memory

• In some languages arrays are objects (store length, etc.)

• In C/C++, arrays are just regions of memory

• So how do we deal with arrays?

• Arrays are essentially pointers with special syntax!

int x[5]



allocating arrays
• An array is a base pointer plus a size

• Base pointer is just a pointer that points to the beginning of the array

• Size defines number boxes in array

• Allocating an array is just assigning a pointer

int * p
p = malloc(10 * 4) //allocate an array of 10 integers 



allocating arrays
• An array is a base pointer plus a size

• Base pointer is just a pointer that points to the beginning of the array

• Size defines number boxes in array

• You may see explicit array syntax for global/stack allocation:

• In this case, p is still just an int * pointer with some extra compiler smarts (p == 
&p)

int p[10]; //allocate 10-integer array on stack 



using arrays

• Accessing arrays is very simple syntactic sugar:

a[expr] === * (a + 4 * expr)

size of data type pointed to by a



code generation for arrays

• Can generate code by implementing a desugaring pass
• Before code generation, walk over AST, replace array nodes with 

corresponding pointer-based expression

• Can generate code by implementing desugaring during code generation



using arrays

• Desugaring composes!

a[i][j] === 
* (a[i] + 4 * j) ===
* (* (a + 4 * i) + 4 * j)



are arrays just pointers?
• Syntactic sugar can be complicated

• In some sense, yes! Array accesses are explicitly equivalent to pointer arithmetic + a 
dereference, and pointers that point to a dynamically allocated array work as above

• But in another sense, no. If arrays are declared as arrays, with either local or global 
allocation, they are array type and C/C++ do some magic with them:

• a refers to the whole box, a returns &a

• b is a pointer that points to a separate array:

 

int a[4] vs int * b = malloc(16) a

b



next: analyzing code


