Desugaring arrays

what is the syntactic sugar?

- An array is just a series of boxes stored consecutively in memory
 - In some languages arrays are objects (store length, etc.)
 - In C/C++, arrays are just regions of memory

- So how do we deal with arrays?
- Arrays are essentially pointers with special syntax!

allocating arrays

- An array is a base pointer plus a size
 - Base pointer is just a pointer that points to the beginning of the array
 - Size defines number boxes in array

Allocating an array is just assigning a pointer

```
int * p
p = malloc(10 * 4) //allocate an array of 10 integers
```

allocating arrays

- An array is a base pointer plus a size
 - Base pointer is just a pointer that points to the beginning of the array
 - Size defines number boxes in array
- You may see explicit array syntax for global/stack allocation:

```
int p[10]; //allocate 10-integer array on stack
```

In this case, p is still just an int * pointer with some extra compiler smarts (p == &p)

using arrays

Accessing arrays is very simple syntactic sugar:

code generation for arrays

- Can generate code by implementing a desugaring pass
 - Before code generation, walk over AST, replace array nodes with corresponding pointer-based expression

Can generate code by implementing desugaring during code generation

using arrays

Desugaring composes!

are arrays just pointers?

- Syntactic sugar can be complicated
 - In some sense, yes! Array accesses are explicitly equivalent to pointer arithmetic + a dereference, and pointers that point to a dynamically allocated array work as above
 - But in another sense, no. If arrays are declared as arrays, with either local or global allocation, they are **array** type and C/C++ do some magic with them:

int
$$a[4]$$
 vs int $*$ b = malloc(16)

- a refers to the whole box, a returns &a
- b is a pointer that points to a separate array:

next: analyzing code