
Memory Allocation



reserving space in memory
• How do we decide what address to put in a pointer?

• Can point to the address of an existing variable

• Means addresses point either to:

• global memory segment (global variables)

• stack (local variables)

• Can we point elsewhere?

p = & a



program heap

• Memory space of executing program also contains a large region called the heap
• Used for dynamically allocated data

• Data not associated with a local variable or a global variable

• Pointed to by pointers

• No fixed location in memory

• How do we allocate that? .stack

.heap

.globals

.text



malloc/free

• malloc(n): allocate (reserve) n bytes of data in the heap, return the address of the 
first byte of the allocated region

x = malloc(10)
10 bytes 8 bytes

y = malloc(8)



malloc/free

• malloc(n): allocate (reserve) n bytes of data in the heap, return the address of the 
first byte of the allocated region

• free(a): free the allocated region at address a

x = malloc(10)
10 bytes 8 bytes

y = malloc(8)

free(x)



malloc/free

• malloc(n): allocate (reserve) n bytes of data in the heap, return the address of the 
first byte of the allocated region

• free(a): free the allocated region at address a

x = malloc(10)
10 bytes 8 bytes

y = malloc(8)

free(x)
free(y)

Guarantee: malloc will not return a region that overlaps with a current location 



implementing malloc and free

• Implementation of memory allocator (malloc/free) is the responsibility of the 
operating system or the virtual machine

• Language usually provides a standard library that interfaces with the operating 
system to perform allocation

• In our course project, we don’t have a standard library or an operating system

• But the RISC simulator is essentially a virtual machine

• malloc/free implemented as “magic” instructions in the simulator

• Compiler should detect invocations of malloc/free and generate magic 
instructions



next: arrays


