
Pointer Codegen Example



code generation (assembly)
• Code generation in assembly is easy: keep the same CodeObject, but switch 

whether temporary is an l-val or an r-val



code generation (assembly)

• * x = * (y + 7) Assignment

de-ref de-ref

Id (x) BinOp (+)

Id (y) Lit (7)



code generation (assembly)

• * x = * (y + 7)

L/R: L
Var: x

Assignment

de-ref de-ref

Id (x) BinOp (+)

Id (y) Lit (7)
L/R: L
Var: y

L/R: R
Val: 7



code generation (assembly)

• * x = * (y + 7)

L/R: L
Var: x

L/R: L
Tmp: t1
Code:
lw t1, 0x4004

Assignment

de-ref de-ref

Id (x) BinOp (+)

Id (y) Lit (7)
L/R: L
Var: y

L/R: R
Val: 7



code generation (assembly)

• * x = * (y + 7)

L/R: L
Var: x

L/R: L
Tmp: t1
Code:
lw t1, 0x4004

Assignment

de-ref de-ref

Id (x) BinOp (+)

Id (y) Lit (7)
L/R: L
Var: y

L/R: R
Val: 7

L/R: R
Tmp: t3
Code:
lw t2, 0x4000
addi t3, t2, 28



code generation (assembly)

L/R: L
Var: x

L/R: L
Tmp: t1
Code:
lw t1, 0x4004

Assignment

de-ref de-ref

Id (x) BinOp (+)

Id (y) Lit (7)
L/R: L
Var: y

L/R: R
Val: 7

L/R: R
Tmp: t3
Code:
lw t2, 0x4000
addi t3, t2, 28

L/R: L
Tmp: t3
Code:
lw t2, 0x4000
addi t3, t2, 28

• * x = * (y + 7)



code generation (assembly)

L/R: L
Var: x

L/R: L
Tmp: t1
Code:
lw t1, 0x4004

Assignment

de-ref de-ref

Id (x) BinOp (+)

Id (y) Lit (7)
L/R: L
Var: y

L/R: R
Val: 7

L/R: R
Tmp: t3
Code:
lw t2, 0x4000
addi t3, t2, 28

L/R: L
Tmp: t3
Code:
lw t2, 0x4000
addi t3, t2, 28

L/R: —
Tmp: -
Code:
lw t1, 0x4004
lw t2, 0x4000
addi t3, t2, 28
lw t4, 0(t3)
sw t4, 0(t1)

• * x = * (y + 7)



code generation (IR)
• Code generation for IR is similar

• Track whether IR temporary holds an l-value or an r-value (e.g., use ‘$’ as prefix 
for r-value, ‘@’ as prefix for l-value)

• Introduce two new IR nodes:

• ADDROF a, b : store the address of operand b in a (if b is a variable, a holds 
the variable address; if b is an l-value temporary, a is the temporary, just as an 
r-value)

• DEREF a, b : store the value of operand b in a as an address (if b is a variable or 
an l-value temporary, load from b and store the result in a as an l-value; if b is 
an r-value temporary, a is the temporary, just as an l-value)



register allocation
• Now that we have pointers, we have aliasing!

• Simple solution: treat all locals/globals as aliased to each other: cannot stay in 
registers. Write back on every store, free after every load

• Slightly more complicated: only variables that have ever had an ADDROF 
operation applied to them can be aliased

• More complex: perform pointer analysis (stay tuned!)



next: memory allocation


