
Code Generation for Pointers



l-values vs r-values
• Remember the distinction between l-values and r-values:

• L-value: an address that can be loaded from or stored to

• R-value: a piece of data that can be computed with

• Up until now, the only l-values we have had are variables (global variables, local 
variables)



l-values, r-values, and pointers, oh my!
• Semantically, what do & and * do?

• Convert between l-values and r-values!

• Address-of operator: take an l-value (an address) and treat it as an r-value (a 
piece of data)

& x + 1

take the address of x, treat it as a piece of data, and add 4 to it

x + 1

take the value of x, then add 1 to it



l-values, r-values, and pointers, oh my!
• Semantically, what do & and * do?

• Convert between l-values and r-values!

• De-reference operator: take an r-value (a piece of data) and treat it as an l-value (an address)

* (x + 1)

take the value in x, add 4 to it, then treat the result as an address so you can load from it or store 
to it

x + 1

take the value of x, then add 1 to it

• Note that if the expression passed to * is an l-value, you load from it first to get an r-value, just 
like before



next: pointer codegen example


