
Pointers

what are pointers?

• Up until now, we have only considered variables that represents values

• A variable is a named box in memory that contains a value

int x

what are pointers?

• Up until now, we have only considered variables that represents values

• A variable is a named box in memory that contains a value

• But what if the box can contain the address of another box?

int x

int xint *y

what are pointers?

• Up until now, we have only considered variables that represents values

• A variable is a named box in memory that contains a value

• But what if the box can contain the address of another box?

int x

int xint *y

what are pointers?

• Up until now, we have only considered variables that represents values

• A variable is a named box in memory that contains a value

• But what if the box can contain the address of another box?

int x

int xint *yint **z

pointers vs references
• A pointer is a variable that holds an address

• That address can be treated as a value that can be computed over

• Some languages only have references instead of pointers

• A reference refers to another memory location (under the hood: holds the
address of another location in memory)

• But cannot do pointer arithmetic

int * p = &a //p gets the address of a
int * q = p + 1 //q gets 4 + the address of a

two key operations

• Two new unary operations:

• & : address-of operation

• Returns the address of a variable

• * : pointer dereference operation:

• Let you load from, or store to, a pointer

p = &a //store the address of a in p

* p = 7 //store to the address stored in p
x = * p //load from the address stored in p

pointer types

• How do we build pointers into our type system?

• Can thin of types as being defined by a grammar!

• Type is either a base type or a pointer to another type

𝑇 → int	|	(loat
𝑇 →	∗ 𝑇	

typing * and &

• What are the type rules for our two unary operations?

• * expr :

If expr has type *T then * expr has type T

• & expr :

If expr has type T then & expr has type *T

next: code generation for pointers

