Control Flow Graphs
what’s a control flow graph?

• A directed graph $G = (V, E)$ where:
 • V (vertices) are the basic blocks in the program
 • E (edges) are control flow edges between basic blocks

• A control flow edge shows that execution may proceed along that edge
 • It is possible (though not always guaranteed) that a program’s execution can go from the source of the edge directly to the target of the edge

```
ADD t7, t1, t2
Lab1:
  ADD t9, t1, t3
  SUB t2, t7, t9
  BNE t2, t1 Lab1
  ADD t2, t4, t7
```
what’s a control flow graph?

• A directed graph $G = (V, E)$ where:
 • V (vertices) are the basic blocks in the program
 • E (edges) are control flow edges between basic blocks

• A control flow edge shows that execution may proceed along that edge
 • It is possible (though not always guaranteed) that a program’s execution can go from the source of the edge directly to the target of the edge

```plaintext
ADD t7, t1, t2
Lab1:
  ADD t9, t1, t3
  SUB t2, t7, t9
  BNE t2, t1 Lab1
  ADD t2, t4, t7
```
what’s a control flow graph?

- A directed graph \(G = (V, E) \) where:
 - \(V \) (vertices) are the basic blocks in the program
 - \(E \) (edges) are control flow edges between basic blocks

- A control flow edge shows that execution may proceed along that edge
 - It is possible (though not always guaranteed) that a program’s execution can go from the source of the edge directly to the target of the edge
adding control flow edges

- There is a directed edge from B_1 to B_2 if
 - There is a branch from the last statement of B_1 to the first statement (leader) of B_2
 - B_2 immediately follows B_1 in program order and B_1 does not end with an unconditional branch
- Input: block, a sequence of basic blocks
- Output: The CFG

```plaintext
for i = 1 to |block|
  x = last statement of block(i)
  if stat(x) is a branch, then
    for each explicit target $y$ of stat(x)
      create edge from block $i$ to block $y$
    end for
  end if
  if stat(x) is not unconditional branch, then
    create edge from block $i$ to block $i+1$
  end if
end for
```
A = 4

t1 = A * B

L1: t2 = t1 / C

if t2 < W goto L2

M = t1 * k

t3 = M + I

L2: H = I

M = t3 - H

if t3 ≥ 0 goto L3

goto L1

L3: halt
A = 4

\[t_1 = A \times B \]

\[t_2 = t_1 / C \]

\[\text{if } t_2 < W \text{ goto L2} \]

\[M = t_1 \times k \]

\[t_3 = M + I \]

\[H = I \]

\[M = t_3 - H \]

\[\text{if } t_3 \geq 0 \text{ goto L3} \]

\[\text{goto L1} \]

\[\text{L3: halt} \]