Control Flow Graphs

what's a control flow graph?

- A directed graph G = (V, E) where:

 - V (vertices) are the basic blocks in the program • E (edges) are control flow edges between basic blocks
- A control flow edge shows that execution may proceed along that edge
 - It is possible (though not always guaranteed) that a program's execution can go from the source of the edge directly to the target of the edge
- ADD t7, t1, t2Lab1: ADD t9, t1, t3 SUB t2, t7, t9 BNE t2, t1 Lab1 ADD t2, t4, t7

what's a control flow graph?

- A directed graph G = (V, E) where:

 - V (vertices) are the basic blocks in the program • E (edges) are control flow edges between basic blocks
- A control flow edge shows that execution may proceed along that edge
 - It is possible (though not always guaranteed) that a program's execution can go from the source of the edge directly to the target of the edge

ADD	t7,	t1, t2
Lab1:		
ADD	t9,	t1, t3
SUB	t2,	t7, t9
BNE	t2,	t1 Lab1
ADD	t2,	t4, t7

what's a control flow graph?

- A directed graph G = (V, E) where:
 - V (vertices) are the basic blocks in the program
 - E (edges) are control flow edges between basic blocks
- A control flow edge shows that execution may proceed along that edge
 - It is possible (though not always guaranteed) that a program's execution can go from the source of the edge directly to the target of the edge

adding control flow edges

- There is a directed edge from B_1 to B_2 if

 - branch
- Input: block, a sequence of basic blocks
- Output: The CFG

for i = 1 to |*block*| x = last statement of block(i)if stat(x) is a branch, then **for** each explicit target y of stat(x)create edge from block *i* to block *y* end for if stat(x) is not unconditional branch, then create edge from block *i* to block *i*+1 end for

• There is a branch from the last statement of B_1 to the first statement (leader) of B_2 B_2 immediately follows B_1 in program order and B_1 does not end with an unconditional

1	A =
2 3	t1 =
	L1: t2
4	if t
5	M =
6	t3 =
7	L2: H
8 9	Μ =
	if t
10	goto
11	L3: ha

example

1 A = 4
2 t1 = A * B
3 L1: t2 = t1 / C
4 if t2 < W goto L2
5 M = t1 * k
6 t3 = M + I
7 L2: H = I
8 M = t3 - H
9 if t3
$$\geq$$
 0 goto L3

example

