
Basic Blocks

what’s a basic block?

• A basic block is a straight-line piece of code with no
control flow

• Basic rule: once you execute the first instruction of
the basic block, you are guaranteed to execute all the
instructions of the basic block

• No way to exit out of the basic block before the
end (no jump statements)

• No way to enter the basic block after the
beginning (no labels you can jump to)

• Control transfers occur between basic blocks

ADD t7, t1, t2
Lab1:
 ADD t9, t1, t3
 SUB t2, t7, t9
 BNE t2, t1 Lab1
 ADD t2, t4, t7

why a basic block?

• When we are optimizing code a key question we
want to answer is: will the transformed code behave the
same as the original code?

• Must be true no matter how the program
executes, no matter what input the program sees

• If I can’t guarantee this, I can’t do the
transformation!

• It is much easier to reason about the behavior of
straight-line code than it is to reason about code
with jumps and branches

ADD t7, t1, t2
Lab1:
 ADD t9, t1, t3
 SUB t2, t7, t9
 BNE t2, t1 Lab1
 ADD t2, t4, t7

more formally

• A basic block is a maximal sequence of instructions
I0, I1, I2, ..., In such that if Ij and Ij+1 are two adjacent
statements in this sequence, then

• The execution of Ij is always immediately followed
by the execution of Ij+1
• The execution of Ij+1 is always immediate preceded

by the execution of Ij

ADD t7, t1, t2
Lab1:
 ADD t9, t1, t3
 SUB t2, t7, t9
 BNE t2, t1 Lab1
 ADD t2, t4, t7

more formally

• A basic block is a maximal sequence of instructions
I0, I1, I2, ..., In such that if Ij and Ij+1 are two adjacent
statements in this sequence, then

• The execution of Ij is always immediately followed
by the execution of Ij+1
• The execution of Ij+1 is always immediate preceded

by the execution of Ij

ADD t7, t1, t2
Lab1:
 ADD t9, t1, t3
 SUB t2, t7, t9
 BNE t2, t1 Lab1
 ADD t2, t4, t7

more formally

• A basic block is a maximal sequence of instructions
I0, I1, I2, ..., In such that if Ij and Ij+1 are two adjacent
statements in this sequence, then

• The execution of Ij is always immediately followed
by the execution of Ij+1
• The execution of Ij+1 is always immediate preceded

by the execution of Ij

ADD t7, t1, t2
Lab1:
 ADD t9, t1, t3
 SUB t2, t7, t9
 BNE t2, t1 Lab1
 ADD t2, t4, t7

more formally

• A basic block is a maximal sequence of instructions
I0, I1, I2, ..., In such that if Ij and Ij+1 are two adjacent
statements in this sequence, then

• The execution of Ij is always immediately followed
by the execution of Ij+1
• The execution of Ij+1 is always immediate preceded

by the execution of Ij

ADD t7, t1, t2
Lab1:
 ADD t9, t1, t3
 SUB t2, t7, t9
 BNE t2, t1 Lab1
 ADD t2, t4, t7

more formally

• A basic block is a maximal sequence of instructions
I0, I1, I2, ..., In such that if Ij and Ij+1 are two adjacent
statements in this sequence, then

• The execution of Ij is always immediately followed
by the execution of Ij+1
• The execution of Ij+1 is always immediate preceded

by the execution of Ij

ADD t7, t1, t2
Lab1:
 ADD t9, t1, t3
 SUB t2, t7, t9
 BNE t2, t1 Lab1
 ADD t2, t4, t7

finding basic blocks

• Use three-address code

• Jump targets are labeled

• Also label beginning/end of functions

• Want to keep track of targets of jump statements

• Any statement whose execution may immediately follow execution of jump statement

• Explicit target: targets mentioned in jump statement

• Implicit target: statements that follow conditional jump statements

• The statement that gets executed if the branch is not taken

finding basic blocks

A = 4
t1 = A * B
do {
 t2 = t1/C
 if (t2 ≥ W) {
 M = t1 * k
 t3 = M + I
 }
 H = I
 M = t3 - H
} while (T3 ≥ 0)

finding basic blocks

1 A = 4
2 t1 = A * B
3 L1: t2 = t1 / C
4 if t2 < W goto L2
5 M = t1 * k
6 t3 = M + I
7 L2: H = I
8 M = t3 - H
9 if t3 ≥ 0 goto L3
10 goto L1
11 L3: halt

finding basic blocks

• Step 1: Identify leaders: first statement of a basic block

• Step 2: In program order, construct a block by appending subsequent statements up to,
but not including, the next leader

• Identifying leaders

• First statement in the program

• Explicit target of any conditional or unconditional branch

• Implicit target of any branch

partitioning algorithm
• Input: set of statements, stat(i) = ith statement in input

• Output: set of leaders, set of basic blocks where block(x) is the set of statements in the
block with leader x

• Algorithm
leaders = {1} //Leaders always includes first statement
for i = 1 to |n| //|n| = number of statements
 if stat(i) is a branch, then
 leaders = leaders ∪ all potential targets
end for
worklist = leaders
while worklist not empty do
 x = remove earliest statement in worklist
 block(x) = {x}
 for (i = x + 1; i ≤ |n| and i ∉ leaders; i++)
 block(x) = block(x) ∪ {i}
 end for
end while

where are the basic blocks?

1 A = 4
2 t1 = A * B
3 L1: t2 = t1 / C
4 if t2 < W goto L2
5 M = t1 * k
6 t3 = M + I
7 L2: H = I
8 M = t3 - H
9 if t3 ≥ 0 goto L3
10 goto L1
11 L3: halt

where are the basic blocks?

1 A = 4
2 t1 = A * B
3 L1: t2 = t1 / C
4 if t2 < W goto L2
5 M = t1 * k
6 t3 = M + I
7 L2: H = I
8 M = t3 - H
9 if t3 ≥ 0 goto L3
10 goto L1
11 L3: halt

leader

leader

leader

leader

leader
leader

where are the basic blocks?

1 A = 4
2 t1 = A * B
3 L1: t2 = t1 / C
4 if t2 < W goto L2
5 M = t1 * k
6 t3 = M + I
7 L2: H = I
8 M = t3 - H
9 if t3 ≥ 0 goto L3
10 goto L1
11 L3: halt

leader

leader

leader

leader

leader
leader

next: control flow graphs

