

- A basic block is a straight-line piece of code with no control flow
- Basic rule: once you execute the first instruction of the basic block, you are guaranteed to execute all the instructions of the basic block
 - No way to exit out of the basic block before the end (no jump statements)
 - No way to enter the basic block after the beginning (no labels you can jump to)
- Control transfers occur between basic blocks

what's a basic block?

ADD t7, t1, t2 Lab1: ADD t9, t1, t3 SUB t2, t7, t9 BNE t2, t1 Lab1 ADD t2, t4, t7

why a basic block?

- When we are optimizing code a key question we want to answer is: will the transformed code behave the same as the original code?
 - Must be true no matter how the program executes, no matter what input the program sees
 - If I can't guarantee this, I can't do the transformation!
- It is much easier to reason about the behavior of straight-line code than it is to reason about code with jumps and branches

ADD t7, t1, t2 Lab1: ADD t9, t1, t3 SUB t2, t7, t9 BNE t2, t1 Lab1 ADD t2, t4, t7

- A basic block is a maximal sequence of instructions I_0 , I_1 , I_2 , ..., I_n such that if I_i and I_{i+1} are two adjacent statements in this sequence, then
 - The execution of I_i is always immediately followed by the execution of I_{i+1}
 - The execution of I_{i+1} is always immediate preceded by the execution of I_i

ADD	t7,	t1, t2
Lab1:		
ADD	t9,	t1, t3
SUB	t2,	t7, t9
BNE	t2,	t1 Lab1
ADD	t2,	t4, t7

- A basic block is a maximal sequence of instructions I_0 , I_1 , I_2 , ..., I_n such that if I_i and I_{i+1} are two adjacent statements in this sequence, then
 - The execution of I_i is always immediately followed by the execution of I_{i+1}
 - The execution of I_{i+1} is always immediate preceded by the execution of I_i

ADD	t7,	t1,	t2
Lab1:			
ADD	t9,	t1,	t3
SUB	t2,	t7,	t9
BNE	t2,	t1	_ab1
ADD	t2,	t4,	t7

- A basic block is a maximal sequence of instructions I_0 , I_1 , I_2 , ..., I_n such that if I_i and I_{i+1} are two adjacent statements in this sequence, then
 - The execution of I_i is always immediately followed by the execution of I_{i+1}
 - The execution of I_{i+1} is always immediate preceded by the execution of I_i

ADD	t7,	t1, t2
Lab1:		
ADD	t9,	t1, t3
SUB	t2,	t7, t9
BNE	t2,	t1 Lab1
ADD	t2,	t4, t7

- A basic block is a maximal sequence of instructions I_0 , I_1 , I_2 , ..., I_n such that if I_i and I_{i+1} are two adjacent statements in this sequence, then
 - The execution of I_i is always immediately followed by the execution of I_{i+1}
 - The execution of I_{i+1} is always immediate preceded by the execution of I_i

ADD	t7,	t1,	t2
Lab1:			
ADD	t9,	t1,	t3
SUB	t2,	t7,	t9
BNE	t2,	t1	Lab1
ADD	t2,	t4,	t7

- A basic block is a maximal sequence of instructions I_0 , I_1 , I_2 , ..., I_n such that if I_i and I_{i+1} are two adjacent statements in this sequence, then
 - The execution of I_i is always immediately followed by the execution of I_{i+1}
 - The execution of I_{i+1} is always immediate preceded by the execution of I_i

ADD	t7,	t1, t2
Lab1:		
ADD	t9,	t1, t3
SUB	t2,	t7, t9
BNE	t2,	t1 Lab1
ADD	t2,	t4, t7

- Use three-address code
- Jump targets are labeled
- Also label beginning/end of functions
- Want to keep track of *targets of jump statements*
 - Any statement whose execution may immediately follow execution of jump statement
 - **Explicit target:** targets mentioned in jump statement
 - Implicit target: statements that follow conditional jump statements
 - The statement that gets executed if the branch is not taken

- A = 4t1 = A * Bdo { t2 = t1/Cif $(t2 \ge W)$ { M = t1 * kt3 = M + I} H = IM = t3 - H} while $(T3 \ge 0)$

1 A = 4 2 t1 = A * B 3 L1: t2 = t1 / C 4 if t2 < W goto L2 5 M = t1 * k 6 t3 = M + I 7 L2: H = I 8 M = t3 - H 9 if t3 \geq 0 goto L3 10 goto L1 11 L3: halt

- Step I: Identify leaders: first statement of a basic block
- Step 2: In program order, construct a block by appending subsequent statements up to, but not including, the next leader
- Identifying leaders
 - First statement in the program
 - Explicit target of any conditional or unconditional branch
 - Implicit target of any branch

partitioning algorithm

- Input: set of statements, $stat(i) = i^{th}$ statement in input
- block with leader x
- Algorithm

for i = 1 to |n| //|n| = number of statements if stat(i) is a branch, then *leaders* = *leaders* \cup all potential targets end for worklist = leaders while worklist not empty do x = remove earliest statement in *worklist* $block(x) = \{x\}$ **for** $(i = x + 1; i \le |n| \text{ and } i \notin \text{leaders}; i++)$ $block(x) = block(x) \cup \{i\}$ end for end while

Output: set of leaders, set of basic blocks where block(x) is the set of statements in the

leaders = {I} //Leaders always includes first statement

where are the basic blocks?

1 A = 4 2 t1 = A * B 3 L1: t2 = t1 / C 4 if t2 < W goto L2 5 M = t1 * k 6 t3 = M + I 7 L2: H = I 8 M = t3 - H 9 if t3 \geq 0 goto L3 10 goto L1 11 L3: halt

where are the basic blocks?

looder	1	٨
leader	1	A =
	2	t1 =
leader	3	L1: t2
	4	if t
leader	5	M =
	6	t3 =
leader	7	L2: H =
	8	Μ =
	9	if t
leader	10	goto
leader	11	L3: hal

4 = A * B = t1 / C t2 < W goto L2 t1 * k = M + I = I t3 - H t3 ≥ 0 goto L3 o L1 lt

where are the basic blocks?

leader	1	A =
	2	t1 =
leader	3	L1: t2
	4	if t
leader	5	M =
	6	t3 =
leader	7	L2: H
	8	Μ =
	9	if t
leader		goto
leader	11	L3: ha

next: control flow graphs