What is a Regular Language!



why do we need them!

* Remember: the job of a scanner/lexer is to identify the “words” in a program
® Variable names
* Keywords
* Operators

®* What we need to do is define what those words are

* Regular expressions give us the tools to define words: what makes for a
valid token



regular expressions

* Regular expressions are a syntactic tool for defining regular languages
* What is a language!

* A set of strings (words)

* Composed of symbols (from a finite alphabet)

* Mathematically: L € X~

* Key: a language can be infinite



“regular” language?

A language is a (possibly infinite) set of strings
But there are many different classes of languages
* Language defined by how “complex” it is

Exact definition is beyond the scope of this class, but roughly, the more complex
a language is, the harder it is to:

* define it: what are the rules that determine what strings are in the set
* recognize it: how can we tell whether a particular string is in the set

Interested in more? See “Chomsky hierarchy”



how will we define regular set!?

An empty set is a regular set: @

A singleton is a regular set: S = {a}

A union of two regular sets is a regular set:
51 ={a} S2={b} S53=51US5; ={a, b}

The concatenation of two regular sets is a regular set:
Si=1a,b} S,={c,d} S3=5,-S, ={ac,ad, bc, bd}

The empty string is a regular set (a language with no words): § = {¢}

More generally: any finite set of strings is a regular set

* Question: can you prove that from the rules above!



How do we get infinite sets!

* One final operator that gives regular sets their power: Kleene star
* Concatenating a regular set 0 or more times is a regular set:

e S={a} S*={¢a,aa,aaaq,..}

e S={a,b} S*={¢a,b,aa,ab,ba,bb,aaa,aab,aba,...}



next: from regular sets to regular
expressions




