What is a Regular Expression?
why do we need them?

- Remember: the job of a **lexer** is to identify the “words” in a program
 - Variable names
 - Keywords
 - Operators
- What we need to do is *define* what those words are
- **Regular expressions** give us the tools to define words: what makes for a valid token
regular expressions

- Regular expressions are a **syntactic tool** for defining **regular languages**
- **What is a language?**
 - A set of strings (words)
 - Composed of symbols (alphabet)
 - Mathematically: $\mathcal{L} \subseteq \Sigma^*$

- Key: a language can be **infinite**
“regular” language?

• A language is a (possibly infinite) set of strings
• But there are many different classes of languages
 • Language defined by how “complex” it is
• Exact definition is beyond the scope of this class, but roughly, the more complex a language is, the harder it is to:
 • define it: what are the rules that determine what strings are in the set
 • recognize it: how can we tell whether a particular string is in the set
• Interested in more? See “Chomsky hierarchy”
how will we define regular set?

- A single character is a regular set: $S = \{a\}$
- A union of two regular sets is a regular set: $S_1 = \{a\} S_2 = \{b\} S_3 = S_1 \cup S_2 = \{a, b\}$
- The concatenation of two regular sets is a regular set: $S_1 = \{a, b\} S_2 = \{c, d\} S_3 = S_1 \cdot S_2 = \{ac, ad, bc, bd\}$
- The empty string is a regular set (a language with no words): $S = \{\varepsilon\}$
- More generally: any finite set of strings is a regular set
 - Question: can you prove that from the rules above?
How do we get infinite sets?

• One final operator that gives regular sets their power: **Kleene star**
• Concatenating a regular set 0 or more times is a regular set:
 • $S = \{a\}$ $S^* = \{\varepsilon, a, aa, aaa, \ldots\}$
 • $S = \{a, b\}$ $S^* = \{\varepsilon, a, b, aa, ab, ba, bb, aaa, aab, aba, \ldots\}$
next: from regular sets to regular expressions

Or: Finally! Regexes!