
What is a Regular Language?

why do we need them?

• Remember: the job of a scanner/lexer is to identify the “words” in a program

• Variable names

• Keywords

• Operators

• What we need to do is define what those words are

• Regular expressions give us the tools to define words: what makes for a
valid token

regular expressions

• Regular expressions are a syntactic tool for defining regular languages

• What is a language?

• A set of strings (words)

• Composed of symbols (from a finite alphabet)

• Mathematically: ℒ ⊆ Σ∗

• Key: a language can be infinite

“regular” language?

• A language is a (possibly infinite) set of strings

• But there are many different classes of languages

• Language defined by how “complex” it is

• Exact definition is beyond the scope of this class, but roughly, the more complex
a language is, the harder it is to:

• define it: what are the rules that determine what strings are in the set

• recognize it: how can we tell whether a particular string is in the set

• Interested in more? See “Chomsky hierarchy”

how will we define regular set?
• An empty set is a regular set: ∅

• A singleton is a regular set: 𝑆 = {𝑎}
• A union of two regular sets is a regular set:

 𝑆! = {𝑎} 	 𝑆"= {𝑏} 	 𝑆#= 𝑆! ∪ 𝑆" = {𝑎, 𝑏}
• The concatenation of two regular sets is a regular set:

 𝑆! = 𝑎, 𝑏 	 𝑆"= 𝑐, 𝑑 	 𝑆# = 𝑆! ⋅ 𝑆" = {𝑎𝑐, 𝑎𝑑, 𝑏𝑐, 𝑏𝑑}
• The empty string is a regular set (a language with no words): 𝑆 = {𝜀}

• More generally: any finite set of strings is a regular set

• Question: can you prove that from the rules above?

How do we get infinite sets?

• One final operator that gives regular sets their power: Kleene star
• Concatenating a regular set 0 or more times is a regular set:

• 𝑆 = 𝑎 	 𝑆∗ = {𝜀, 𝑎, 𝑎𝑎, 𝑎𝑎𝑎, … }
• 𝑆 = 𝑎, 𝑏 	 𝑆∗ = {𝜀, 𝑎, 𝑏, 𝑎𝑎, 𝑎𝑏, 𝑏𝑎, 𝑏𝑏, 𝑎𝑎𝑎, 𝑎𝑎𝑏, 𝑎𝑏𝑎, … }

next: from regular sets to regular
expressions

Or: Finally!
Regexes!

