Phases of a Compiler

• Compiler starts by seeing only characters

scanner

- Compiler starts by seeing only text
 - Not very easy to read!

'i' 'f' 'u' '(' 'a' '<'
'4' ')' 'u' '{' \n' '\t'
'b' ':' '=' '5' '\n' '}'</pre>

- Compiler starts by seeing only text
 - Not very easy to read!
- Scanner converts this into a series of tokens

'i' 'f' 'u' '(' a' '<'
'4' ')' 'u' '{' \\n' '\t'
'b' ':' '=' '5' '\n' '}'</pre>

- Compiler starts by seeing only text
 - Not very easy to read!
- Scanner converts this into a series of tokens
 - One item for each "word" in the program

- Compiler starts by seeing only text
 - Not very easy to read!
- Scanner converts this into a series of tokens
 - One item for each "word" in the program
- But we still do not know what the structure of the program is

- Converts string of tokens into a parse tree or an abstract syntax tree.
- Captures syntactic structure of code (i.e., "this is an if statement, with a thenblock")

parser

parser

- Converts string of tokens into a parse tree or an abstract syntax tree.
- Captures syntactic structure of code (i.e., "this is an if statement, with a thenblock")
 - Think: diagramming a sentence

semantic actions

- Interpret the semantics of syntactic constructs
 - the code is
 - What's the difference?

Note that up until now we have only been concerned with what the syntax of

syntax vs semantics

- Syntax: "grammatical" structure of language
 - What symbols, in what order, are a legal part of the language?
 - What is a valid "sentence"?
- But something that is syntactically correct may mean nothing! • "colorless green ideas sleep furiously"
- Semantics: meaning of language
 - What does a particular set of symbols, in a particular order, mean? • What does it mean to be an if statement?

 - "evaluate the conditional, if the conditional is true, execute the then clause, otherwise execute the else clause"

a note on semantics

- How do you define semantics?
 - Static semantics: properties of programs
 - All variables must have a type
 - Expressions must use consistent types
 - Can define using *attribute grammars*
 - Dynamic semantics: how does a program execute?
 - Documentation
 - Can define an operational or denotational semantics for a language
 - Well beyond the scope of this class!
- For many languages, "the compiler is the specification"

semantic actions

- Actions taken by compiler based on the semantics of program statements
 - Building a symbol table
 - Generating intermediate representations

symbol tables

- A list of every declaration in a program
 - Variables, functions, types, etc.
- Keeps track of key information about a symbol
 - Variables: scope, type, location (for global variables)
 - Structure definitions: names of fields, types of fields, layout of structure
 - Functions: return type, argument types and names

- Also called *IR*
- A (relatively) low level representation of the program
- But not machine-specific!
- One example: three address code

- done: //done!
- - Note: no registers!

intermediate representation

```
bge a, 4, done
mov 5, b
```

• Each instruction can take at most three operands (variables, literals, or labels)

optimizer

- Transforms code to make it more efficient
- Different kinds, operating at different levels
 - High-level optimizations
 - Loop interchange, parallelization
 - Operates at level of AST, or even source code
 - Scalar optimizations
 - Dead code elimination, common sub-expression elimination
 - **Operates on IR**
 - Peephole optimizations
 - Strength reduction, constant folding
 - Operates on small sequences of instructions

optimizer

- Transforms code to make it more efficient
- Different kinds, operating at different levels
 - High-level optimizations
 - Loop interchange, parallelization
 - Operates at level of AST, or even source code
 - Scalar optimizations
 - Dead code elimination, common sub-expression elimination
 - **Operates on IR**
 - Peephole optimizations
 - Strength reduction, constant folding
 - Operates on small sequences of instructions

C++ source #1 ×

A ▼	Save/Load + Add new	🛿 Vim	🔎 CppInsights	📌 Quick-bench	C++
1	bool collatz(unsigned	int128	x) {		and address of the second seco
2	while (true) {		_		
3	if (x <= 1)				
4	return tru	e;			
5					
6	if (x % 2)				
7	x >>= 1;				
8	else				
9	x = 3 * x +	1;			
10	}				
11	}				

https://gcc.godbolt.org/z/Wrfeo18of

- Generate assembly from intermediate representation
 - Select which instructions to use
 - Schedule instructions
 - Decide which registers to use

code generation

lw r1 a li r2 4 bge r1 r2 done li r3 5 sw r3 b done:

- Generate assembly from intermediate representation
 - Select which instructions to use
 - Schedule instructions
 - Decide which registers to use

code generation

li r1 4 lw r2 a blt r1 r2 done li r1 5 sw r1 b done:

