
Phases of a Compiler

scanner
• Compiler starts by seeing only characters

if (a < 4) {
 b := 5
}

scanner
• Compiler starts by seeing only text

• Not very easy to read!

‘i’ ‘f’ ‘␣‘ ‘(‘ ‘a’ ‘<‘
‘4’ ‘)’ ‘␣‘ ‘{‘ ‘\n’ ‘\t’
‘b’ ‘:’ ‘=’ ‘5’ ‘\n’ ‘}’

scanner
• Compiler starts by seeing only text

• Not very easy to read!

• Scanner converts this into a series of tokens

‘i’ ‘f’ ‘␣‘ ‘(‘ ‘a’ ‘<‘
‘4’ ‘)’ ‘␣‘ ‘{‘ ‘\n’ ‘\t’
‘b’ ‘:’ ‘=’ ‘5’ ‘\n’ ‘}’

scanner
• Compiler starts by seeing only text

• Not very easy to read!

• Scanner converts this into a series of tokens

• One item for each “word” in the program

scanner
• Compiler starts by seeing only text

• Not very easy to read!

• Scanner converts this into a series of tokens

• One item for each “word” in the program

• But we still do not know what the structure of the program is

parser
• Converts string of tokens into a parse tree or an abstract syntax tree.

• Captures syntactic structure of code (i.e., “this is an if statement, with a then-
block”)

parser
• Converts string of tokens into a parse tree or an abstract syntax tree.

• Captures syntactic structure of code (i.e., “this is an if statement, with a then-
block”)

• Think: diagramming a sentence

semantic actions

• Interpret the semantics of syntactic constructs

• Note that up until now we have only been concerned with what the syntax of
the code is

• What’s the difference?

syntax vs semantics
• Syntax: “grammatical” structure of language

• What symbols, in what order, are a legal part of the language?

• What is a valid “sentence”?

• But something that is syntactically correct may mean nothing!

• “colorless green ideas sleep furiously”

• Semantics: meaning of language

• What does a particular set of symbols, in a particular order, mean?

• What does it mean to be an if statement?

• “evaluate the conditional, if the conditional is true, execute the then clause,
otherwise execute the else clause”

a note on semantics
• How do you define semantics?

• Static semantics: properties of programs

• All variables must have a type

• Expressions must use consistent types

• Can define using attribute grammars

• Dynamic semantics: how does a program execute?

• Documentation

• Can define an operational or denotational semantics for a language

• Well beyond the scope of this class!

• For many languages, “the compiler is the specification”

semantic actions

• Actions taken by compiler based on the semantics of program statements

• Building a symbol table

• Generating intermediate representations

symbol tables

• A list of every declaration in a program

• Variables, functions, types, etc.

• Keeps track of key information about a symbol

• Variables: scope, type, location (for global variables)

• Structure definitions: names of fields, types of fields, layout of structure

• Functions: return type, argument types and names

• …

intermediate representation

• Also called IR

• A (relatively) low level representation of the program

• But not machine-specific!

• One example: three address code

• Each instruction can take at most three operands (variables, literals, or labels)

• Note: no registers!

bge a, 4, done
 mov 5, b
done: //done!

optimizer
• Transforms code to make it more efficient

• Different kinds, operating at different levels

• High-level optimizations

• Loop interchange, parallelization

• Operates at level of AST, or even source code

• Scalar optimizations

• Dead code elimination, common sub-expression elimination

• Operates on IR

• Peephole optimizations

• Strength reduction, constant folding

• Operates on small sequences of instructions

optimizer
• Transforms code to make it more efficient

• Different kinds, operating at different levels

• High-level optimizations

• Loop interchange, parallelization

• Operates at level of AST, or even source code

• Scalar optimizations

• Dead code elimination, common sub-expression elimination

• Operates on IR

• Peephole optimizations

• Strength reduction, constant folding

• Operates on small sequences of instructions

https://gcc.godbolt.org/z/Wrfeo18of

code generation
• Generate assembly from intermediate representation

• Select which instructions to use

• Schedule instructions

• Decide which registers to use

bge a, 4, done
 mov 5, b
done: //done!

lw r1 a
 li r2 4
 bge r1 r2 done
 li r3 5
 sw r3 b
done:

code generation
• Generate assembly from intermediate representation

• Select which instructions to use

• Schedule instructions

• Decide which registers to use

bge a, 4, done
 mov 5, b
done: //done!

li r1 4
 lw r2 a
 blt r1 r2 done
 li r1 5
 sw r1 b
done:

next: putting it all together

Or: H
ow do these phases interact?

