Phases of a Compiler



scanner

* Compiler starts by seeing only characters




scanner

* Compiler starts by seeing only text

* Not very easy to read!




scanner

* Compiler starts by seeing only text
* Not very easy to read!

® Scanner converts this into a series of




scanner

* Compiler starts by seeing only text
* Not very easy to read!
® Scanner converts this into a series of

* One item for each “word” in the program

CO-CO-Cod-loera-ry-C0
(OO



scanner

* Compiler starts by seeing only text
* Not very easy to read!

® Scanner converts this into a series of tokens
* One item for each “word” in the program

* But we still do not know what the structure of the program is

CO-CO-(od-loer -0
(OO



parser

* Converts string of tokens into a parse tree or an abstract syntax tree.

* Captures syntactic structure of code (i.e., “this is an if statement, with a then-
block™)

CO-CO-Cod-loera-ry-C0
(OO



parser

* Converts string of tokens into a or an

* Captures syntactic structure of code (i.e., “this is an if statement, with a then-
block™)

* Think: diagramming a sentence EI
~

If-stmt
o, o

I'hs -



semantic actions

* Interpret the of syntactic constructs
* Note that up until now we have only been concerned with what the of
the code is

* What’s the difference?



Syntax vs semantics

: “grammatical” structure of language
®* What symbols, in what order, are a legal part of the language?
®* What is a valid “sentence’™?

* But something that is syntactically correct may mean nothing!
.
: meaning of language

®* What does a particular set of symbols, in a particular order, mean?
®* What does it mean to be an if statement!?

* “evaluate the conditional, if the conditional is true, execute the then clause,
otherwise execute the else clause”



a hote on semantics

* How do you define semantics?

® Static semantics: properties of programs
* All variables must have a type
* Expressions must use consistent types
* Can define using attribute grammars

* Dynamic semantics: how does a program execute!
* Documentation
* Can define an operational or denotational semantics for a language

* Well beyond the scope of this class!

or many languages, e compiler is the specification”
° y languages, “th pil the specificat



semantic actions

* Actions taken by compiler based on the semantics of program statements
* Building a symbol table

* Generating intermediate representations



symbol tables

* A list of every declaration in a program
* Variables, functions, types, etc.
* Keeps track of key information about a symbol
® Variables: scope, type, location (for global variables)
* Structure definitions: names of fields, types of fields, layout of structure

* Functions: return type, argument types and names



intermediate representation

Also called

A (relatively) low level representation of the program
But not machine-specific!

One example:

bge a, 4, done
mov 5, b
done: //done!

Each instruction can take at most three operands (variables, literals, or labels)

* Note: no registers!



optimizer

* Transforms code to make it more efficient
* Different kinds, operating at different levels
* High-level optimizations
* Loop interchange, parallelization
* Operates at level of AST, or even source code
* Scalar optimizations
* Dead code elimination, common sub-expression elimination
* Operates on IR
* Peephole optimizations
* Strength reduction, constant folding

* Operates on small sequences of instructions



optimizer

* Transforms code to make it more efficient
* Different kinds, operating at different levels
* High-level optimizations
* Loop interchange, parallelization
* Operates at level of AST, or even source code
* Scalar optimizations
* Dead code elimination, common sub-expression elimination
* Operates on IR
* Peephole optimizations
* Strength reduction, constant folding

* Operates on small sequences of instructions



C++ source #1 X x86-64 clang (trunk) (C++, Editor #1, Compiler #1) X

A~ BSave/load +Addnew..> WV Vim /© Cpplnsights ® Quick-bench C++ x86-64 clang (trunk) ® -03
. . \ _
L couatz@unmgned —ttizs x'ﬂ { A~ QL Output...¥ Y Filter...> & Libraries < Add new...> o Add tool...~
2 while (true) { . .
if (x <= 1) 1 collatz(unsigned @ 1ntl128):
mov pr

return true;
ret

if (x % 2)

X >>= 1;
else

X = 3*x + 1;

https://gcc.godbolt.org/z/Wrfeo18of




code generation

* Generate assembly from intermediate representation
* Select which instructions to use
* Schedule instructions

* Decide which registers to use

lw rl a
11 r2 4
bge a, 4, done bge r1 r2 done
mov 5, b — E .
done: //done! 1 r35
| sw r3 b

done:



code generation

* Generate assembly from intermediate representation
* Select which instructions to use
* Schedule instructions

* Decide which registers to use

1l1rl 4
lw r2 a
bge a, 4, done blt rl r2 done
mov 5, b i 3 .
done: //done! irlh5
| sw rl b

done:



next: putting it all together




