
Types of Compilers

traditionally …
• Any program that translates one representation [of a program] to another can be

thought of as a compiler.

• But we can think of a few different types of compilers for high level programming
languages, based on what kind of representations they translate to

1. High level language → assembly language (e.g., llvm)

2. High level language → machine-independent code (e.g., javac)

3. Machine-independent code → assembly (e.g., Java’s JIT compiler)

4. High level language → high level language (e.g., domain-specific languages,
source-to-source optimizers)

5. Low level language → low level language (e.g., Apple’s Rosetta 2)

high-level to assembly

• Compiler converts program into assembly

• Assembler is a machine-specific translator that converts assembly into machine code

• Conversion is usually one-to-one with some exceptions

• Program locations

• Variable names

t1 = t2 + 1 addi r1 r2 1

addi r1 r2 1 00000000001 00010 000 00001 0010011

• Compiler converts program into assembly

• Assembler is a machine-specific translator that converts assembly into machine code

• Conversion is usually one-to-one with some exceptions

• Program locations

• Variable names

high-level to assembly

t1 = t2 + 1 addi r1 r2 1

addi r1 r2 1 00000000001 00010 000 00001 0010011
immediate: 1 register: r2 register: r1 opcode: addi

• Compiler converts program into machine-independent representation

• Interpreter then processes and executes this representation “on-the-fly”

• Operations are “executed” by invoking methods of the interpreter, rather than directly
executing on the machine

• Compiler and interpreter can be separate

• e.g., javac translates Java programs into Java bytecode, Java interpreter executes bytecode

• Bytecode is like assembly language, but not tied to a specific machine

• May have a single program (just called an “interpreter” then)

• e.g., most scripting languages, like python, Perl.

• Aside: what are the pros and cons of the interpreter-based approach?

high-level to machine-independent

• First part works just like with an interpreter: convert program to machine-
independent representation

• Replace the interpreter with another compiler

• This just-in-time compiler (JIT) compiles code while the program executes

• As JIT, compiled (“native”) code takes over from interpreted code

• Is this better or worse than a compiler that generates machine code directly
from the program?

• What code does JIT compile?

machine-independent to assembly

high-level to high-level

• Some times, the goal of a compiler is not to generate code to run, but to just
generate another representation

• Modernize legacy code

• Air Force’s conversion from COBOL to Java

• Reuse programming tools

• Translate restricted, domain-specific language (e.g., SQL) to general-purpose
language

• Keep program in the same high-level language

• Many optimizing compilers just rewrite the source code of a language

Low-level to low-level

• Modernize legacy machine code

• Rosetta: PowerPC → x86

• Rosetta 2: x86-64 → ARM64

• Compatibility and Performance

next: what are the phases of a
compiler?

Or: W
hat tra

nslatio
ns does a

compiler do to compile?

